Keywords: totally ordered groups; ordered automorphisms; divisible groups; archimedean rank
@article{CMJ_2007_57_3_a6,
author = {Lafuente-Rodr{\'\i}guez, Ramiro H.},
title = {Divisibility in certain automorphism groups},
journal = {Czechoslovak Mathematical Journal},
pages = {865--875},
year = {2007},
volume = {57},
number = {3},
mrnumber = {2356286},
zbl = {1174.06339},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a6/}
}
Lafuente-Rodríguez, Ramiro H. Divisibility in certain automorphism groups. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 865-875. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a6/
[1] The Black Swamp Problem Book. Maintained by W. C. Holland at Bowling Green State University, Bowling Green, OH.
[2] V. Bludov: (to appear). | Zbl
[3] P. F. Conrad: Extensions of ordered groups. Proc. American Math. Soc. 6 (1955), 516–528. | DOI | MR | Zbl
[4] P. F. Conrad: The group of order preserving automorphisms of an ordered abelian group. Proc. American Math. Soc. 9 (1958), 382–389. | DOI | MR | Zbl
[5] M. R. Darnel: Theory of Lattice-Ordered Groups. Pure and Applied Math. 187, Marcel Dekker, 1995. | MR | Zbl
[6] O. Hölder: Die Axiome der Quantität und die Lehre vom Maß. Ber. Verh. Sachs. Ges. Wiss., Leipzig Math.-Phys. Cl. 53 (1901), 1–64.
[7] W. C. Holland: Extensions of Ordered Algebraic Structures. Ph.D. Thesis, Tulane University, 1961.
[8] W. C. Holland: Transitive lattice-ordered permutation groups. Math. Zeitschr. 87 (1965), 420–433. | DOI | MR | Zbl
[9] B. H. Neumann: On ordered groups. American J. Math. 71 (1949), 1–18. | DOI | MR | Zbl