Keywords: lattice ordered group; weak homogeneity; direct product; cardinal property; $f$-homogeneity
@article{CMJ_2007_57_3_a5,
author = {Jakub{\'\i}k, J\'an},
title = {Weak homogeneity of lattice ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {849--863},
year = {2007},
volume = {57},
number = {3},
mrnumber = {2356285},
zbl = {1174.06337},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a5/}
}
Jakubík, Ján. Weak homogeneity of lattice ordered groups. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 849-863. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a5/
[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. | MR | Zbl
[2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR
[3] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[4] J. Jakubík: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85–98. | DOI | MR
[5] J. Jakubík: Konvexe Ketten in $\ell $-Gruppen. Časopis pěst. mat. 83 (1958), 53–63. | MR
[6] J. Jakubík: Retract mappings of projectable $MV$-algebras. Soft Computing 4 (2000), 27–32.
[7] J. Jakubík: Direct product decompositions of MV-algebras. Czech. Math. J. 44 (1994), 725–739.
[8] J. Jakubík: Weak homogeneity of and Pierce’s theorem for $MV$-algebras. Czech. Math. J. 56 (2006), 1215–1227. | DOI | MR
[9] R. S. Pierce: A note on complete Boolean algebras. Proc. Amer. Math. Soc. 9 (1958), 892–896. | DOI | MR
[10] R. S. Pierce: Some questions about complete Boolean algebras. Proc. Sympos. Pure Math. 2 (1961), 129–140. | MR | Zbl
[11] R. Sikorski: Boolean Algebras. Second Edition, Springer Verlag, Berlin, 1964. | MR | Zbl
[12] F. Šik: Über subdirekte Summen geordneter Gruppen. Czech. Math. J. 10 (1960), 400–424. | MR