Weak homogeneity of lattice ordered groups
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 849-863 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we deal with weakly homogeneous direct factors of lattice ordered groups. The main result concerns the case when the lattice ordered groups under consideration are archimedean, projectable and conditionally orthogonally complete.
In this paper we deal with weakly homogeneous direct factors of lattice ordered groups. The main result concerns the case when the lattice ordered groups under consideration are archimedean, projectable and conditionally orthogonally complete.
Classification : 06F15
Keywords: lattice ordered group; weak homogeneity; direct product; cardinal property; $f$-homogeneity
@article{CMJ_2007_57_3_a5,
     author = {Jakub{\'\i}k, J\'an},
     title = {Weak homogeneity of lattice ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {849--863},
     year = {2007},
     volume = {57},
     number = {3},
     mrnumber = {2356285},
     zbl = {1174.06337},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a5/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Weak homogeneity of lattice ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 849
EP  - 863
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a5/
LA  - en
ID  - CMJ_2007_57_3_a5
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Weak homogeneity of lattice ordered groups
%J Czechoslovak Mathematical Journal
%D 2007
%P 849-863
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a5/
%G en
%F CMJ_2007_57_3_a5
Jakubík, Ján. Weak homogeneity of lattice ordered groups. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 849-863. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a5/

[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. | MR | Zbl

[2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR

[3] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl

[4] J. Jakubík: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85–98. | DOI | MR

[5] J. Jakubík: Konvexe Ketten in $\ell $-Gruppen. Časopis pěst. mat. 83 (1958), 53–63. | MR

[6] J. Jakubík: Retract mappings of projectable $MV$-algebras. Soft Computing 4 (2000), 27–32.

[7] J. Jakubík: Direct product decompositions of MV-algebras. Czech. Math. J. 44 (1994), 725–739.

[8] J. Jakubík: Weak homogeneity of and Pierce’s theorem for $MV$-algebras. Czech. Math. J. 56 (2006), 1215–1227. | DOI | MR

[9] R. S. Pierce: A note on complete Boolean algebras. Proc. Amer. Math. Soc. 9 (1958), 892–896. | DOI | MR

[10] R. S. Pierce: Some questions about complete Boolean algebras. Proc. Sympos. Pure Math. 2 (1961), 129–140. | MR | Zbl

[11] R. Sikorski: Boolean Algebras. Second Edition, Springer Verlag, Berlin, 1964. | MR | Zbl

[12] F. Šik: Über subdirekte Summen geordneter Gruppen. Czech. Math. J. 10 (1960), 400–424. | MR