The Kato-type spectrum and local spectral theory
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 831-842 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $T\in {\mathcal{L}}(X)$ be a bounded operator on a complex Banach space $X$. If $V$ is an open subset of the complex plane such that $\lambda -T$ is of Kato-type for each $\lambda \in V$, then the induced mapping $f(z)\mapsto (z-T)f(z)$ has closed range in the Fréchet space of analytic $X$-valued functions on $V$. Since semi-Fredholm operators are of Kato-type, this generalizes a result of Eschmeier on Fredholm operators and leads to a sharper estimate of Nagy’s spectral residuum of $T$. Our proof is elementary; in particular, we avoid the sheaf model of Eschmeier and Putinar and the theory of coherent analytic sheaves.
Let $T\in {\mathcal{L}}(X)$ be a bounded operator on a complex Banach space $X$. If $V$ is an open subset of the complex plane such that $\lambda -T$ is of Kato-type for each $\lambda \in V$, then the induced mapping $f(z)\mapsto (z-T)f(z)$ has closed range in the Fréchet space of analytic $X$-valued functions on $V$. Since semi-Fredholm operators are of Kato-type, this generalizes a result of Eschmeier on Fredholm operators and leads to a sharper estimate of Nagy’s spectral residuum of $T$. Our proof is elementary; in particular, we avoid the sheaf model of Eschmeier and Putinar and the theory of coherent analytic sheaves.
Classification : 47A11, 47A53
Keywords: decomposable operator; semi-Fredholm operator; semi-regular operator; Kato decomposition; Bishop’s property ($\beta $); property ($\delta $)
@article{CMJ_2007_57_3_a3,
     author = {Miller, T. L. and Miller, V. G. and Neumann, M. M.},
     title = {The {Kato-type} spectrum and local spectral theory},
     journal = {Czechoslovak Mathematical Journal},
     pages = {831--842},
     year = {2007},
     volume = {57},
     number = {3},
     mrnumber = {2356283},
     zbl = {1174.47001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a3/}
}
TY  - JOUR
AU  - Miller, T. L.
AU  - Miller, V. G.
AU  - Neumann, M. M.
TI  - The Kato-type spectrum and local spectral theory
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 831
EP  - 842
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a3/
LA  - en
ID  - CMJ_2007_57_3_a3
ER  - 
%0 Journal Article
%A Miller, T. L.
%A Miller, V. G.
%A Neumann, M. M.
%T The Kato-type spectrum and local spectral theory
%J Czechoslovak Mathematical Journal
%D 2007
%P 831-842
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a3/
%G en
%F CMJ_2007_57_3_a3
Miller, T. L.; Miller, V. G.; Neumann, M. M. The Kato-type spectrum and local spectral theory. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 831-842. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a3/

[1] P. Aiena: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publ., Dordrecht, 2004. | MR | Zbl

[2] P. Aiena and F. Villafañe: Components of resolvent sets and local spectral theory. Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 1–14. | MR

[3] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory. Proc. London Math. Soc. 75 (1997), 323–348. | MR

[4] J. Eschmeier: Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie. Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42, Münster, 1987. | MR | Zbl

[5] J. Eschmeier: On the essential spectrum of Banach space operators. Proc. Edinburgh Math. Soc. 43 (2000), 511–528. | MR | Zbl

[6] D. Herrero: On the essential spectra of quasisimilar operators. Can. J. Math. 40 (1988), 1436–1457. | DOI | MR | Zbl

[7] T. Kato: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math. 6 (1958), 261–322. | DOI | MR | Zbl

[8] J.-P. Labrousse: Les opérateurs quasi Fredholm: une généralisation des opérateurs semi Fredholm. Rend. Circ. Mat. Palermo 29 (1980), 161–258. | DOI | MR | Zbl

[9] K. B. Laursen and M. M. Neumann: An Introduction to Local Spectral Theory. Clarendon Press, Oxford, 2000. | MR

[10] T. L. Miller and V. G. Miller: Equality of essential spectra of quasisimilar operators with property $(\delta )$. Glasgow Math. J. 38 (1996), 21–28. | DOI | MR

[11] T. L. Miller, V. G. Miller and M. M. Neumann: Localization in the spectral theory of operators on Banach spaces. Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 247–262. | MR

[12] B. Nagy: On $S$-decomposable operators. J. Operator Theory 2 (1979), 277–286. | MR | Zbl

[13] M. Putinar: Quasi-similarity of tuples with Bishop’s property $(\beta )$. Int. Eq. and Oper. Theory 15 (1992), 1047–1052. | DOI | MR | Zbl

[14] F.-H. Vasilescu: Analytic Functional Calculus and Spectral Decompositions. Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982. | MR | Zbl