Keywords: decomposable operator; semi-Fredholm operator; semi-regular operator; Kato decomposition; Bishop’s property ($\beta $); property ($\delta $)
@article{CMJ_2007_57_3_a3,
author = {Miller, T. L. and Miller, V. G. and Neumann, M. M.},
title = {The {Kato-type} spectrum and local spectral theory},
journal = {Czechoslovak Mathematical Journal},
pages = {831--842},
year = {2007},
volume = {57},
number = {3},
mrnumber = {2356283},
zbl = {1174.47001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a3/}
}
Miller, T. L.; Miller, V. G.; Neumann, M. M. The Kato-type spectrum and local spectral theory. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 831-842. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a3/
[1] P. Aiena: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publ., Dordrecht, 2004. | MR | Zbl
[2] P. Aiena and F. Villafañe: Components of resolvent sets and local spectral theory. Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 1–14. | MR
[3] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory. Proc. London Math. Soc. 75 (1997), 323–348. | MR
[4] J. Eschmeier: Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie. Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42, Münster, 1987. | MR | Zbl
[5] J. Eschmeier: On the essential spectrum of Banach space operators. Proc. Edinburgh Math. Soc. 43 (2000), 511–528. | MR | Zbl
[6] D. Herrero: On the essential spectra of quasisimilar operators. Can. J. Math. 40 (1988), 1436–1457. | DOI | MR | Zbl
[7] T. Kato: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math. 6 (1958), 261–322. | DOI | MR | Zbl
[8] J.-P. Labrousse: Les opérateurs quasi Fredholm: une généralisation des opérateurs semi Fredholm. Rend. Circ. Mat. Palermo 29 (1980), 161–258. | DOI | MR | Zbl
[9] K. B. Laursen and M. M. Neumann: An Introduction to Local Spectral Theory. Clarendon Press, Oxford, 2000. | MR
[10] T. L. Miller and V. G. Miller: Equality of essential spectra of quasisimilar operators with property $(\delta )$. Glasgow Math. J. 38 (1996), 21–28. | DOI | MR
[11] T. L. Miller, V. G. Miller and M. M. Neumann: Localization in the spectral theory of operators on Banach spaces. Proceedings of the Fourth Conference on Function Spaces at Edwardsville, Contemp. Math. 328, Amer. Math. Soc., Providence, RI, 2003, pp. 247–262. | MR
[12] B. Nagy: On $S$-decomposable operators. J. Operator Theory 2 (1979), 277–286. | MR | Zbl
[13] M. Putinar: Quasi-similarity of tuples with Bishop’s property $(\beta )$. Int. Eq. and Oper. Theory 15 (1992), 1047–1052. | DOI | MR | Zbl
[14] F.-H. Vasilescu: Analytic Functional Calculus and Spectral Decompositions. Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982. | MR | Zbl