A general class of iterative equations on the unit circle
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 809-829 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A class of functional equations with nonlinear iterates is discussed on the unit circle ${\mathbb{T}}^1$. By lifting maps on ${\mathbb{T}}^1$ and maps on the torus ${\mathbb{T}}^n$ to Euclidean spaces and extending their restrictions to a compact interval or cube, we prove existence, uniqueness and stability for their continuous solutions.
A class of functional equations with nonlinear iterates is discussed on the unit circle ${\mathbb{T}}^1$. By lifting maps on ${\mathbb{T}}^1$ and maps on the torus ${\mathbb{T}}^n$ to Euclidean spaces and extending their restrictions to a compact interval or cube, we prove existence, uniqueness and stability for their continuous solutions.
Classification : 37E05, 39B12, 39B22, 39B32, 39B82
Keywords: iterative equation; circle; lift; orientation-preserving; continuation
@article{CMJ_2007_57_3_a2,
     author = {Zdun, Marek C. and Zhang, Weinian},
     title = {A general class of iterative equations on the unit circle},
     journal = {Czechoslovak Mathematical Journal},
     pages = {809--829},
     year = {2007},
     volume = {57},
     number = {3},
     mrnumber = {2356282},
     zbl = {1174.39005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a2/}
}
TY  - JOUR
AU  - Zdun, Marek C.
AU  - Zhang, Weinian
TI  - A general class of iterative equations on the unit circle
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 809
EP  - 829
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a2/
LA  - en
ID  - CMJ_2007_57_3_a2
ER  - 
%0 Journal Article
%A Zdun, Marek C.
%A Zhang, Weinian
%T A general class of iterative equations on the unit circle
%J Czechoslovak Mathematical Journal
%D 2007
%P 809-829
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a2/
%G en
%F CMJ_2007_57_3_a2
Zdun, Marek C.; Zhang, Weinian. A general class of iterative equations on the unit circle. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 809-829. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a2/

[1] M. Bajger: On the structure of some flows on the unit circle. Aequationes Math. 55 (1998), 106–121. | DOI | MR | Zbl

[2] K. Baron and W. Jarczyk: Recent results on functional equations in a single variable, perspectives and open problems. Aequationes Math. 61 (2001), 1–48. | DOI | MR

[3] K. Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups. Publ. Math. Debrecen 55 (1999), 363–383. | MR

[4] K. Ciepliński: On properties of monotone mappings of the circle. J. Anal. Appl. 4 (2006), 169–178. | MR

[5] I. P. Cornfeld, S. V. Fomin and Y. G. Sinai: Ergodic Theory, Grundlehren 245, Springer Verlag, Berlin-Heidelberg-New York. 1982. | MR

[6] W. Jarczyk: On an equation of linear iteration. Aequationes Math. 51 (1996), 303–310. | DOI | MR | Zbl

[7] W. Jarczyk: Babbage equation on the circle. Publ. Math. Debrecen 63 (2003), 389–400. | MR

[8] M. Kuczma, B. Choczewski and R. Ger: Iterative Functional Equations. Encycl. Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990. | MR

[9] M. Kulczycki and J. Tabor: Iterative functional equations in the class of Lipschitz functions. Aequationes Math. 64 (2002), 24–33. | DOI | MR

[10] J. Mai: Conditions of existence for $N$-th iterative roots of homeomorphisms on the circle, in Chinese. Acta Math. Sinica 30 (1987), 280–283. | MR

[11] J. Mai and X. Liu: Existence, uniqueness and stability of $C^m$ solutions of iterative functional equations. Science in China A43 (2000), 897–913. | MR

[12] J. Matkowski and W. Zhang: On the polynomial-like iterative functional equation. Functional Equations & Inequalities, Math.& Its Appl. Vol. 518, ed. T. M. Rassias, Kluwer Academic, Dordrecht, 2000, pp. 145–170. | MR

[13] A. Mukherjea and J. S. Ratti: On a functional equation involving iterates of a bijection on the unit interval. Nonlinear Anal. 7 (1983), 899–908. | MR

[14] J. Palis and W. Melo: Geometric Theory of Dynamical Systems, An Introduction. Springer-Verlag, New York, 1982. | MR

[15] J. Si: Continuous solutions of iterative equation $G(f(x), f^{n_2}(x),\dots , f^{n_k}(x))=F(x)$. J. Math. Res. Exp. 15 (1995), 149–150. (Chinese) | MR

[16] P. Solarz: On some iterative roots on the circle. Publ. Math. Debrecen 63 (2003), 677–692. | MR | Zbl

[17] J. Tabor and J. Tabor: On a linear iterative equation. Results in Math. 27 (1995), 412–421. | DOI | MR

[18] C. T. C. Wall: A Geometric Introduction to Topology. Addison-Wesley, Reading, 1972. | MR

[19] D. Yang and W. Zhang: Characteristic solutions of polynomial-like iterative equations. Aequationes Math. 67 (2004), 80–105. | DOI | MR

[20] M. C. Zdun: On iterative roots of homeomorphisms of the circle. Bull. Polish Acad. Sci. Math. 48 (2000), 203–213. | MR | Zbl

[21] J. Zhang, L. Yang and W. Zhang: Some advances on functional equations. Adv. Math. (Chin.) 24 (1995), 385–405. | MR

[22] W. Zhang: Discussion on the solutions of the iterated equation $\sum _{i=1}^n\lambda _if^i(x)=F(x)$. Chin. Sci. Bul. 32 (1987), 1444–1451. | MR

[23] W. Zhang: Discussion on the differentiable solutions of the iterated equation $\sum _{i=1}^n\!\lambda _if^i(x){=}F(x)$. Nonlinear Anal. 15 (1990), 387–398. | DOI | MR

[24] W. Zhang and J. A. Baker: Continuous solutions of a polynomial-like iterative equation with variable coefficients. Ann. Polon. Math. 73 (2000), 29–36. | DOI | MR

[25] W. Zhang: Solutions of equivariance for a polynomial-like iterative equation. Proc. Royal Soc. Edinburgh 130A (2000), 1153–1163. | MR | Zbl

[26] Zhu-Sheng Zhang: Relations between embedding flows and transformation groups of self-mappings on the circle. Acta Math. Sinica 24 (1981), 953–957. (Chinese) | MR