Closure spaces and characterizations of filters in terms of their Stone images
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 1025-1034 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure.
Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure.
Classification : 54A05, 54A20, 54D55
Keywords: filters; ultrafilters; Frechet; closure spaces
@article{CMJ_2007_57_3_a17,
     author = {Mynard, Anh Tran and Mynard, Fr\'ed\'eric},
     title = {Closure spaces and characterizations of filters in terms of their {Stone} images},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1025--1034},
     year = {2007},
     volume = {57},
     number = {3},
     mrnumber = {2356937},
     zbl = {1174.54001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a17/}
}
TY  - JOUR
AU  - Mynard, Anh Tran
AU  - Mynard, Frédéric
TI  - Closure spaces and characterizations of filters in terms of their Stone images
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1025
EP  - 1034
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a17/
LA  - en
ID  - CMJ_2007_57_3_a17
ER  - 
%0 Journal Article
%A Mynard, Anh Tran
%A Mynard, Frédéric
%T Closure spaces and characterizations of filters in terms of their Stone images
%J Czechoslovak Mathematical Journal
%D 2007
%P 1025-1034
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a17/
%G en
%F CMJ_2007_57_3_a17
Mynard, Anh Tran; Mynard, Frédéric. Closure spaces and characterizations of filters in terms of their Stone images. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 1025-1034. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a17/

[1] A. V. Arhangel’skii: Bisequential spaces, tightness of products, and metrizability conditions in topological groups. Trans. Moscow Math. Soc. 55 (1994), 207–219. | MR

[2] A. Bella and V. I. Malykhin: Single non-isolated point space. Rend. Istit. Mat. Univ. Trieste 28 (1996), 101–113. | MR

[3] S. Dolecki: Convergence-theoretic methods in quotient quest. Topology Appl. 73 (1996), 1–21. | DOI | MR

[4] S. Dolecki: Private communication (2003).

[5] Marcel Erné: The ABC of order and topology. Category Theory at Work (H. Herrlich and H.-E. Porst, eds.), Heldermann, 1991, pp. 57–83. | MR

[6] I. Labuda, F. Jordan and F. Mynard: Finite products of filters that are compact relative to a class of filters. Applied General Topology (to appear). | MR

[7] F. Jordan and F. Mynard: Espaces productivement de Fréchet. C. R. Acad. Sci. Paris, Ser I 335 (2002), 259–262. | DOI | MR

[8] F. Jordan and F. Mynard: Productively Fréchet spaces. Czech. Math. J. 54 (2004), 981–990. | DOI | MR

[9] F. Jordan and F. Mynard: Compatible relations on filters and stability of local topological properties under supremum and product. Topopogy Appl. 153 (2006), 2386–2412. | DOI | MR

[10] Chuan Liu: On weakly bisequential spaces. Comment. Math. Univ. Carolinae 41 (2000), 611–617. | MR

[11] V. I. Malyhin: On countable spaces having no bicompactification of countable tightness. Dokl. Akad. Nauk SSSR 206 (1972), 1407–1411. | MR | Zbl

[12] E. Michael: A quintuple quotient quest. Gen. Topology Appl. 2 (1972), 91–138. | DOI | MR | Zbl

[13] R. C. Olson: Biquotient maps, countably bisequential spaces and related topics. Topology Appl. 4 (1974), 1–28. | DOI | MR