A class of integral operators on mixed norm spaces in the unit ball
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 1013-1023 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This article provided some sufficient or necessary conditions for a class of integral operators to be bounded on mixed norm spaces in the unit ball.
This article provided some sufficient or necessary conditions for a class of integral operators to be bounded on mixed norm spaces in the unit ball.
Classification : 30H05, 32A36, 47B35, 47B38
Keywords: integral operator; mixed norm space; boundedness
@article{CMJ_2007_57_3_a16,
     author = {Li, Songxiao},
     title = {A class of integral operators on mixed norm spaces in the unit ball},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1013--1023},
     year = {2007},
     volume = {57},
     number = {3},
     mrnumber = {2356936},
     zbl = {1174.47349},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a16/}
}
TY  - JOUR
AU  - Li, Songxiao
TI  - A class of integral operators on mixed norm spaces in the unit ball
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1013
EP  - 1023
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a16/
LA  - en
ID  - CMJ_2007_57_3_a16
ER  - 
%0 Journal Article
%A Li, Songxiao
%T A class of integral operators on mixed norm spaces in the unit ball
%J Czechoslovak Mathematical Journal
%D 2007
%P 1013-1023
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a16/
%G en
%F CMJ_2007_57_3_a16
Li, Songxiao. A class of integral operators on mixed norm spaces in the unit ball. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 1013-1023. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a16/

[1] A.  Benedek and R.  Panzone: The spaces  $L^p$ with mixed norm. Duke Math.  J. 28 (1961), 301–324. | DOI | MR

[2] B. R.  Choe: Projections, the weighted Bergman spaces, and the Bloch space. Proc. Am. Math. Soc. 108 (1990), 127–136. | DOI | MR | Zbl

[3] F.  Forelli and W.  Rudin: Projections on spaces of holomorphic functions in balls. Indiana Univ. Math.  J. 24 (1974), 593–602. | MR

[4] S.  Gadbois: Mixed-norm generalizations of Bergman space and duality. Proc. Am. Math. Soc. 104 (1988), 1171–1180. | DOI | MR

[5] C.  Kolaski: A new look at a theorem of Forelli and Rudin. Indiana Univ. Math.  J. 28 (1979), 495–499. | MR | Zbl

[6] O.  Kurens and K. H.  Zhu: A class of integral operators on the unit ball of  $\mathbb{C}^n$. Integr. Equ. Oper. Theory 56 (2006), 71–82. | DOI | MR

[7] Y. M.  Liu: Boundedness of the Bergman type operators on mixed norm space. Proc. Am. Math. Soc. 130 (2002), 2363–2367. | DOI | MR

[8] G. B.  Ren and J. H.  Shi: Bergman type operator on mixed norm spaces with applications. Chin. Ann. Math., Ser. B 18 (1997), 265–276. | MR

[9] G. B.  Ren and J. H.  Shi: Forelli-Rudin type theorem on pluriharmonic Bergman spaces with small exponent. Sci. China, Ser.  A 42 (1999), 1286–1291. | DOI | MR

[10] G. B.  Ren and J. H.  Shi: Gleason’s problem in weighted Bergman space on egg domains. Sci. China, Ser.  A 41 (1998), 225–231. | DOI | MR

[11] A. L.  Shields and D. L.  Williams: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162 (1971), 287–302. | MR

[12] K. H.  Zhu: The Bergman spaces, the Bloch spaces and Gleason’s problem. Trans. Am. Math. Soc. 309 (1988), 253–268. | MR

[13] K. H.  Zhu: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics  226. Springer-Verlag, New York, 2005. | MR