Keywords: integral operator; mixed norm space; boundedness
@article{CMJ_2007_57_3_a16,
author = {Li, Songxiao},
title = {A class of integral operators on mixed norm spaces in the unit ball},
journal = {Czechoslovak Mathematical Journal},
pages = {1013--1023},
year = {2007},
volume = {57},
number = {3},
mrnumber = {2356936},
zbl = {1174.47349},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a16/}
}
Li, Songxiao. A class of integral operators on mixed norm spaces in the unit ball. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 1013-1023. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a16/
[1] A. Benedek and R. Panzone: The spaces $L^p$ with mixed norm. Duke Math. J. 28 (1961), 301–324. | DOI | MR
[2] B. R. Choe: Projections, the weighted Bergman spaces, and the Bloch space. Proc. Am. Math. Soc. 108 (1990), 127–136. | DOI | MR | Zbl
[3] F. Forelli and W. Rudin: Projections on spaces of holomorphic functions in balls. Indiana Univ. Math. J. 24 (1974), 593–602. | MR
[4] S. Gadbois: Mixed-norm generalizations of Bergman space and duality. Proc. Am. Math. Soc. 104 (1988), 1171–1180. | DOI | MR
[5] C. Kolaski: A new look at a theorem of Forelli and Rudin. Indiana Univ. Math. J. 28 (1979), 495–499. | MR | Zbl
[6] O. Kurens and K. H. Zhu: A class of integral operators on the unit ball of $\mathbb{C}^n$. Integr. Equ. Oper. Theory 56 (2006), 71–82. | DOI | MR
[7] Y. M. Liu: Boundedness of the Bergman type operators on mixed norm space. Proc. Am. Math. Soc. 130 (2002), 2363–2367. | DOI | MR
[8] G. B. Ren and J. H. Shi: Bergman type operator on mixed norm spaces with applications. Chin. Ann. Math., Ser. B 18 (1997), 265–276. | MR
[9] G. B. Ren and J. H. Shi: Forelli-Rudin type theorem on pluriharmonic Bergman spaces with small exponent. Sci. China, Ser. A 42 (1999), 1286–1291. | DOI | MR
[10] G. B. Ren and J. H. Shi: Gleason’s problem in weighted Bergman space on egg domains. Sci. China, Ser. A 41 (1998), 225–231. | DOI | MR
[11] A. L. Shields and D. L. Williams: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162 (1971), 287–302. | MR
[12] K. H. Zhu: The Bergman spaces, the Bloch spaces and Gleason’s problem. Trans. Am. Math. Soc. 309 (1988), 253–268. | MR
[13] K. H. Zhu: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226. Springer-Verlag, New York, 2005. | MR