Shape Hessian for generalized Oseen flow by differentiability of a minimax: A Lagrangian approach
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 987-1011 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The goal of this paper is to compute the shape Hessian for a generalized Oseen problem with nonhomogeneous Dirichlet boundary condition by the velocity method. The incompressibility will be treated by penalty approach. The structure of the shape gradient and shape Hessian with respect to the shape of the variable domain for a given cost functional are established by an application of the Lagrangian method with function space embedding technique.
The goal of this paper is to compute the shape Hessian for a generalized Oseen problem with nonhomogeneous Dirichlet boundary condition by the velocity method. The incompressibility will be treated by penalty approach. The structure of the shape gradient and shape Hessian with respect to the shape of the variable domain for a given cost functional are established by an application of the Lagrangian method with function space embedding technique.
Classification : 49K35, 49Q12, 76D07, 76D55
Keywords: shape sensitivity analysis; shape Hessian; Eulerian semiderivative; differentiability of a minimax; Oseen flow
@article{CMJ_2007_57_3_a15,
     author = {Gao, Zhiming and Ma, Yichen and Zhuang, Hongwei},
     title = {Shape {Hessian} for generalized {Oseen} flow by differentiability of a minimax: {A} {Lagrangian} approach},
     journal = {Czechoslovak Mathematical Journal},
     pages = {987--1011},
     year = {2007},
     volume = {57},
     number = {3},
     mrnumber = {2356935},
     zbl = {1174.76008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a15/}
}
TY  - JOUR
AU  - Gao, Zhiming
AU  - Ma, Yichen
AU  - Zhuang, Hongwei
TI  - Shape Hessian for generalized Oseen flow by differentiability of a minimax: A Lagrangian approach
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 987
EP  - 1011
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a15/
LA  - en
ID  - CMJ_2007_57_3_a15
ER  - 
%0 Journal Article
%A Gao, Zhiming
%A Ma, Yichen
%A Zhuang, Hongwei
%T Shape Hessian for generalized Oseen flow by differentiability of a minimax: A Lagrangian approach
%J Czechoslovak Mathematical Journal
%D 2007
%P 987-1011
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a15/
%G en
%F CMJ_2007_57_3_a15
Gao, Zhiming; Ma, Yichen; Zhuang, Hongwei. Shape Hessian for generalized Oseen flow by differentiability of a minimax: A Lagrangian approach. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 987-1011. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a15/

[1] R. A. Adams: Sobolev Spaces. Academic Press, London, 1975. | MR | Zbl

[2] J. Céa: Lectures on Optimization: Theory and Algorithms. Springer-Verlag, 1978. | MR

[3] J. Céa: Problems of shape optimal design. “Optimization of Distributed Parameter Structures”, Vol. II, E. J. Haug and J. Céa (eds.), Sijthoff and Noordhoff, Alphen aan denRijn, Netherlands, 1981, pp. 1005–1048.

[4] R. Correa and A. Seeger: Directional derivative of a minmax function. Nonlinear Analysis, Theory Methods and Applications 9 (1985), 13–22. | DOI | MR

[5] M. C. Delfour, G. Payre and J. -P. Zolésio: An optimal triangulation for second order elliptic problems. Computer Methods in Applied Mechanics and Engineering 50 (1985), 231–261. | DOI | MR

[6] M. C. Delfour and J.-P. Zolésio: Shape sensitivity analysis via min max differentiability. SIAM J. Control and Optimization 26 (1988), 834–862. | DOI | MR

[7] M. C. Delfour and J.-P. Zolésio: Computation of the shape Hessian by a Lagrangian method. IFAC, Control of Distributed Parameter Systems. Perpignan, France, 1989, pp. 215–220.

[8] M. C. Delfour and J.-P. Zolésio: Shape Hessian by the velocity method: a Lagrangian approach. Lect. Notes. Cont. Inf. Sci, 147, Springer-Verlag, 1990, pp. 255–279. | MR

[9] M. C. Delfour and J.-P. Zolésio: Tangential calculus and shape derivative in Shape Optimization and Optimal Design (Cambridge, 1999), Dekker, New York. 2001, pp. 37–60. | MR

[10] M. C. Delfour and J.-P. Zolésio: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Advance in Design and Control, SIAM (2002). | MR

[11] I. Ekeland and R. Temam: Convex Analysis and Variational Problems. Series Classics in Applied Mathematics, SIAM, Philadelphia, 1999. | MR

[12] N. Fujii: Domain optimization problems with a boundary value problem as a constraint. “Control of Distributed Parameter Systems” 1986, Pergamon Press, Oxford, New York, 1986, pp. 5–9.

[13] D. Gilbarg and N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1983. | MR

[14] J. Hadamard: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mém. Sav. étrang. (2) 33, Nr. 4, 128 S (1908).

[15] J. Haslinger and R. A. E. Mäkinen: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM (2003). | MR

[16] J.-C. Nédélec: Acoustic and Electromagnetic Equations. Integral representations for harmonic problems. Springer-Verlag, Berlin Heidelberg New York, 2001. | MR

[17] O. Pironneau: Optimal Shape Design for Elliptic systems. Springer, Berlin, 1984. | MR | Zbl

[18] J. Simon: Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980), 649–687. | DOI | MR | Zbl

[19] J. Simon: Second variations for domain optimization problems. “Control of Distributed Parameter Systems”, Birkhauser Verlag, 1988. | MR

[20] R. Temam: Navier-Stokes Equations: Theory and Numerical Analysis. Providence, RI: American Mathematical Society (AMS), 2001. | MR | Zbl

[21] J.-P. Zolésio: Identification de domaines par déformation, Thèse de doctorat d’état, Université de Nice, France. 1979.

[22] J. Sokolowski and J.-P. Zolésio: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer-Verlag, Berlin, 1992. | MR