Keywords: shape sensitivity analysis; shape Hessian; Eulerian semiderivative; differentiability of a minimax; Oseen flow
@article{CMJ_2007_57_3_a15,
author = {Gao, Zhiming and Ma, Yichen and Zhuang, Hongwei},
title = {Shape {Hessian} for generalized {Oseen} flow by differentiability of a minimax: {A} {Lagrangian} approach},
journal = {Czechoslovak Mathematical Journal},
pages = {987--1011},
year = {2007},
volume = {57},
number = {3},
mrnumber = {2356935},
zbl = {1174.76008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a15/}
}
TY - JOUR AU - Gao, Zhiming AU - Ma, Yichen AU - Zhuang, Hongwei TI - Shape Hessian for generalized Oseen flow by differentiability of a minimax: A Lagrangian approach JO - Czechoslovak Mathematical Journal PY - 2007 SP - 987 EP - 1011 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a15/ LA - en ID - CMJ_2007_57_3_a15 ER -
%0 Journal Article %A Gao, Zhiming %A Ma, Yichen %A Zhuang, Hongwei %T Shape Hessian for generalized Oseen flow by differentiability of a minimax: A Lagrangian approach %J Czechoslovak Mathematical Journal %D 2007 %P 987-1011 %V 57 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a15/ %G en %F CMJ_2007_57_3_a15
Gao, Zhiming; Ma, Yichen; Zhuang, Hongwei. Shape Hessian for generalized Oseen flow by differentiability of a minimax: A Lagrangian approach. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 987-1011. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a15/
[1] R. A. Adams: Sobolev Spaces. Academic Press, London, 1975. | MR | Zbl
[2] J. Céa: Lectures on Optimization: Theory and Algorithms. Springer-Verlag, 1978. | MR
[3] J. Céa: Problems of shape optimal design. “Optimization of Distributed Parameter Structures”, Vol. II, E. J. Haug and J. Céa (eds.), Sijthoff and Noordhoff, Alphen aan denRijn, Netherlands, 1981, pp. 1005–1048.
[4] R. Correa and A. Seeger: Directional derivative of a minmax function. Nonlinear Analysis, Theory Methods and Applications 9 (1985), 13–22. | DOI | MR
[5] M. C. Delfour, G. Payre and J. -P. Zolésio: An optimal triangulation for second order elliptic problems. Computer Methods in Applied Mechanics and Engineering 50 (1985), 231–261. | DOI | MR
[6] M. C. Delfour and J.-P. Zolésio: Shape sensitivity analysis via min max differentiability. SIAM J. Control and Optimization 26 (1988), 834–862. | DOI | MR
[7] M. C. Delfour and J.-P. Zolésio: Computation of the shape Hessian by a Lagrangian method. IFAC, Control of Distributed Parameter Systems. Perpignan, France, 1989, pp. 215–220.
[8] M. C. Delfour and J.-P. Zolésio: Shape Hessian by the velocity method: a Lagrangian approach. Lect. Notes. Cont. Inf. Sci, 147, Springer-Verlag, 1990, pp. 255–279. | MR
[9] M. C. Delfour and J.-P. Zolésio: Tangential calculus and shape derivative in Shape Optimization and Optimal Design (Cambridge, 1999), Dekker, New York. 2001, pp. 37–60. | MR
[10] M. C. Delfour and J.-P. Zolésio: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Advance in Design and Control, SIAM (2002). | MR
[11] I. Ekeland and R. Temam: Convex Analysis and Variational Problems. Series Classics in Applied Mathematics, SIAM, Philadelphia, 1999. | MR
[12] N. Fujii: Domain optimization problems with a boundary value problem as a constraint. “Control of Distributed Parameter Systems” 1986, Pergamon Press, Oxford, New York, 1986, pp. 5–9.
[13] D. Gilbarg and N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1983. | MR
[14] J. Hadamard: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mém. Sav. étrang. (2) 33, Nr. 4, 128 S (1908).
[15] J. Haslinger and R. A. E. Mäkinen: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM (2003). | MR
[16] J.-C. Nédélec: Acoustic and Electromagnetic Equations. Integral representations for harmonic problems. Springer-Verlag, Berlin Heidelberg New York, 2001. | MR
[17] O. Pironneau: Optimal Shape Design for Elliptic systems. Springer, Berlin, 1984. | MR | Zbl
[18] J. Simon: Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980), 649–687. | DOI | MR | Zbl
[19] J. Simon: Second variations for domain optimization problems. “Control of Distributed Parameter Systems”, Birkhauser Verlag, 1988. | MR
[20] R. Temam: Navier-Stokes Equations: Theory and Numerical Analysis. Providence, RI: American Mathematical Society (AMS), 2001. | MR | Zbl
[21] J.-P. Zolésio: Identification de domaines par déformation, Thèse de doctorat d’état, Université de Nice, France. 1979.
[22] J. Sokolowski and J.-P. Zolésio: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer-Verlag, Berlin, 1992. | MR