On locally solid topological lattice groups
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 963-973 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(G,\tau )$ be a commutative Hausdorff locally solid lattice group. In this paper we prove the following: (1) If $(G,\tau )$ has the $A$(iii)-property, then its completion $(\widehat{G},\hat{\tau })$ is an order-complete locally solid lattice group. (2) If $G$ is order-complete and $\tau $ has the Fatou property, then the order intervals of $G$ are $\tau $-complete. (3) If $(G,\tau )$ has the Fatou property, then $G$ is order-dense in $\widehat{G}$ and $(\widehat{G},\hat{\tau })$ has the Fatou property. (4) The order-bound topology on any commutative lattice group is the finest locally solid topology on it. As an application, a version of the Nikodym boundedness theorem for set functions with values in a class of locally solid topological groups is established.
Let $(G,\tau )$ be a commutative Hausdorff locally solid lattice group. In this paper we prove the following: (1) If $(G,\tau )$ has the $A$(iii)-property, then its completion $(\widehat{G},\hat{\tau })$ is an order-complete locally solid lattice group. (2) If $G$ is order-complete and $\tau $ has the Fatou property, then the order intervals of $G$ are $\tau $-complete. (3) If $(G,\tau )$ has the Fatou property, then $G$ is order-dense in $\widehat{G}$ and $(\widehat{G},\hat{\tau })$ has the Fatou property. (4) The order-bound topology on any commutative lattice group is the finest locally solid topology on it. As an application, a version of the Nikodym boundedness theorem for set functions with values in a class of locally solid topological groups is established.
Classification : 28B15, 46A40, 54H11
Keywords: topological completion; locally solid $\ell $-group; topological continuity; Fatou property; order-bound topology
@article{CMJ_2007_57_3_a13,
     author = {Khan, Abdul Rahim and Rowlands, Keith},
     title = {On locally solid topological lattice groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {963--973},
     year = {2007},
     volume = {57},
     number = {3},
     mrnumber = {2356933},
     zbl = {1174.54025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a13/}
}
TY  - JOUR
AU  - Khan, Abdul Rahim
AU  - Rowlands, Keith
TI  - On locally solid topological lattice groups
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 963
EP  - 973
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a13/
LA  - en
ID  - CMJ_2007_57_3_a13
ER  - 
%0 Journal Article
%A Khan, Abdul Rahim
%A Rowlands, Keith
%T On locally solid topological lattice groups
%J Czechoslovak Mathematical Journal
%D 2007
%P 963-973
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a13/
%G en
%F CMJ_2007_57_3_a13
Khan, Abdul Rahim; Rowlands, Keith. On locally solid topological lattice groups. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 963-973. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a13/

[1] C. D. Aliprantis: On the completion of Hausdorff locally solid Riesz spaces. Trans. Amer. Math. Soc. 196 (1974), 105–125. | DOI | MR | Zbl

[2] C. D. Aliprantis and O. Burkinshaw: A new proof of Nakano’s theorem in locally solid Riesz spaces. Math. Zeit. 144 (1975), 25–33. | DOI | MR

[3] C. D. Aliprantis and O. Burkinshaw: Nakano’s theorem revisited. Michigan Math. J. 23 (1976), 173–176. | DOI | MR

[4] A. Avallone and A. Valente: A decomposition theorem for submeasures. Atti. Sem. Mat. Fis. Univ. Modena XLIII (1995), 81–90. | MR

[5] A. Boccuto and D. Candeloro: Uniform $s$-boundedness and convergence results for measures with values in complete $\ell $-groups. J. Math. Anal. Appl. 265 (2002), 170–194. | DOI | MR

[6] F. G. Bonales, F. J. Trigos-Arrieta and R. V. Mendoza: A characterization of Pontryagin-Van Kampen duality for locally convex spaces. Topology Appl. 121 (2002), 75–89. | DOI | MR

[7] N. Bourbaki: Elements of Mathematics, General Topology, Part 1. Addison-Wesley, 1966. | MR | Zbl

[8] W. W. Comfort, S. Hernandez and F. J. Trigos-Arrieta: Cross sections and homeomorphism classes of Abelian groups equipped with the Bohr topology. Topology Appl. 115 (2001), 215–233. | MR

[9] W. W. Comfort, S. U. Raczkowski and F. J. Trigos-Arrieta: The dual group of a dense subgroup. Czech. Math. J. 54 (129) (2004), 509–533. | DOI | MR

[10] L. Drewnowski: Uniform boundedness principle for finitely additive vector measures. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. et. Phys. 21 (1973), 115–118. | MR | Zbl

[11] D. H. Fremlin: On the completion of locally solid vector lattices. Pacific J. Math. 43 (1972), 341–347. | DOI | MR | Zbl

[12] D. H. Fremlin: Topological Riesz Spaces and Measure Theory. Cambridge University Press, England, 1974. | MR | Zbl

[13] J. Jakubík: On the affine completeness of lattice ordered groups. Czech. Math. J. 54 (129) (2004), 423–429. | DOI | MR

[14] G. Jameson: Ordered Linear Spaces, Lecture Notes in Mathematics No. 141, Springer-Verlag, Berlin, Germany. 1970. | MR

[15] J. K. Kalton: Topologies on Riesz groups and applications to measure theory. Proc. London Math. Soc. 28 (1974), 253–273. | MR | Zbl

[16] A. R. Khan and K. Rowlands: A decomposition theorem for submeasures. Glasgow Math. J. 26 (1985), 67–74. | MR

[17] S. U. Raczkowski: Totally bounded topological group topologies on the integers. Topology Appl. 121 (2002), 63–74. | DOI | MR | Zbl

[18] K. D. Schmidt: Decompositions of vector measures in Riesz spaces and Banach lattices. Proc. Edinburgh Math. Soc. 29 (1986), 23–29. | MR | Zbl

[19] C. Swartz: The Nikodym boundedness theorem for lattice-valued measures. Arch. Math. 53 (1989), 390–393. | DOI | MR | Zbl

[20] C. Swartz: An Introduction to Functional Analysis. Marcel Dekker, New York, U.S.A., 1992. | MR | Zbl