@article{CMJ_2007_57_3_a10,
author = {Komatsu, Takao},
title = {Hurwitz continued fractions with confluent hypergeometric functions},
journal = {Czechoslovak Mathematical Journal},
pages = {919--932},
year = {2007},
volume = {57},
number = {3},
mrnumber = {2356930},
zbl = {1163.11009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a10/}
}
Komatsu, Takao. Hurwitz continued fractions with confluent hypergeometric functions. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 919-932. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a10/
[1] A. Châtelet: Contribution a la théorie des fractions continues arithmétiques. Bull. Soc. Math. France 40 (1912), 1–25. | MR
[2] A. Hurwitz: Über die Kettenbrüche, deren Teilnenner arithmetische Reihen bilden. Vierteljahrsschrift d. Naturforsch. Gesellschaft in Zürich, Jahrg. 41, 1896.
[3] W. B. Jones, W. J. Thron: Continued Fractions: Analytic Theory and Applications (Encyclopedia of mathematics and its applications, Vol. 11). Addison-Wesley, Reading, 1980. | MR
[4] T. Komatsu: On Hurwitzian and Tasoev’s continued fractions. Acta Arith. 107 (2003), 161–177. | DOI | MR | Zbl
[5] T. Komatsu: Simple continued fraction expansions of some values of certain hypergeometric functions. Tsukuba J. Math. 27 (2003), 161–173. | DOI | MR | Zbl
[6] T. Komatsu: Hurwitz and Tasoev continued fractions. Monatsh. Math. 145 (2005), 47–60. | DOI | MR | Zbl
[7] O. Perron: Die Lehre von den Kettenbrüchen, Band I. Teubner, Stuttgart, 1954. | MR | Zbl
[8] G. N. Raney: On continued fractions and finite automata. Math. Ann. 206 (1973), 265–283. | DOI | MR | Zbl
[9] L. J. Slater: Generalized hypergeometric functions. Cambridge Univ. Press, Cambridge, 1966. | MR | Zbl
[10] H. S. Wall: Analytic Theory of Continued Fractions. D. van Nostrand Company, Toronto, 1948. | MR | Zbl