Absolute continuity theorems for abstract Riemann integration
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 793-807 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Absolute continuity for functionals is studied in the context of proper and abstract Riemann integration examining the relation to absolute continuity for finitely additive measures and giving results in both directions: integrals coming from measures and measures induced by integrals. To this end, we look for relations between the corresponding integrable functions of absolutely continuous integrals and we deal with the possibility of preserving absolute continuity when extending the elemental integrals.
Absolute continuity for functionals is studied in the context of proper and abstract Riemann integration examining the relation to absolute continuity for finitely additive measures and giving results in both directions: integrals coming from measures and measures induced by integrals. To this end, we look for relations between the corresponding integrable functions of absolutely continuous integrals and we deal with the possibility of preserving absolute continuity when extending the elemental integrals.
Classification : 28C05
Keywords: finitely additive integration; abstract Riemann integration; absolute continuity
@article{CMJ_2007_57_3_a1,
     author = {Amo, E. de and Campo, R. del and D{\'\i}az-Carrillo, M.},
     title = {Absolute continuity theorems for abstract {Riemann} integration},
     journal = {Czechoslovak Mathematical Journal},
     pages = {793--807},
     year = {2007},
     volume = {57},
     number = {3},
     mrnumber = {2356281},
     zbl = {1174.28015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a1/}
}
TY  - JOUR
AU  - Amo, E. de
AU  - Campo, R. del
AU  - Díaz-Carrillo, M.
TI  - Absolute continuity theorems for abstract Riemann integration
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 793
EP  - 807
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a1/
LA  - en
ID  - CMJ_2007_57_3_a1
ER  - 
%0 Journal Article
%A Amo, E. de
%A Campo, R. del
%A Díaz-Carrillo, M.
%T Absolute continuity theorems for abstract Riemann integration
%J Czechoslovak Mathematical Journal
%D 2007
%P 793-807
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a1/
%G en
%F CMJ_2007_57_3_a1
Amo, E. de; Campo, R. del; Díaz-Carrillo, M. Absolute continuity theorems for abstract Riemann integration. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 793-807. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a1/

[1] E. de Amo, I. Chiţescu and M. Díaz-Carrillo: An approximate functional Radon-Nikodym theorem. Rend. del Circ. Mat. de Palermo 48 (1999), 443–450. | MR

[2] E. de Amo, I. Chiţescu and M. Díaz-Carrillo: An exact functional Radon-Nikodym theorem for Daniell Integrals. Studia Mathematica 148 (2001), 97–110. | DOI | MR

[3] E. de Amo and M. Díaz-Carrillo: On abstract Fubini theorems for finitely additive integration. Proc. Amer. Math. Soc. 123 (1995), 2739–2744. | DOI | MR

[4] G. Aumann: Integralerweiterungen mittels Normen. Arch. Math. 3 (1952), 441–450. | DOI | MR | Zbl

[5] S. Bochner: Additive set functions on groups. Ann. of Math. 40 (1939), 769–799. | DOI | MR | Zbl

[6] M. Díaz-Carrillo: Handbook of Measure Theory, Vol. 1, Chap. 11. 2002. | MR

[7] M. Díaz-Carrillo and H. Günzler: Abstract Daniell-Loomis spaces. Bull. Austral. Math. Soc. 53 (1996), 135–142. | DOI | MR

[8] M. Díaz-Carrillo and H. Günzler: Daniell-Loomis integrals. Rocky Mount. J. Math. 27 (1997), 1057–1087. | MR

[9] M. Díaz-Carrillo and P. Muñoz-Rivas: Finitely additive integration: integral extension with local-convergence. Ann. Sci. Math. Québec 17 (1993), 145–154. | MR

[10] M. Díaz-Carrillo and P. Muñoz-Rivas: Positive linear functionals and improper integration. Ann. Sci. Math. Québec 18 (1994), 149–156. | MR

[11] N. Dunford and J. T. Schwartz: Linear Operartors, part I, General Theory. Interscience, New-York, 1957. | MR

[12] C. Fefferman: A Radon-Nikodym theorem for finitely additive set functions. Pacific J. Math. 23 (1967), 35–45. | DOI | MR | Zbl

[13] H. Günzler: Integration. Bibliographisches Institut, Mannheim, 1985. | MR

[14] L. H. Loomis: Linear functionals and content. Amer. J. Math. 76 (1954), 168–182. | DOI | MR | Zbl

[15] W. F. Pfeffer: Integrals and Measures. Dekker, New-York, 1977. | MR | Zbl

[16] M. H. Stone: Notes on integration I–IV. Proc. Nat. Acad. Sci., USA 34 (1948), 336–342, 447–455, 483–490. | DOI | MR

[17] F. W. Schäfke: Lokale Integralnormen and verallgemeinerte uneigentlich Riemann-Stiltjes-Integrals. J.Reine Angew. Math. 289 (1977), 118–134. | MR