Keywords: sequence space; superposition operator; modulus function; continuity
@article{CMJ_2007_57_3_a0,
author = {Kolk, Enno and Raidj\~oe, Annemai},
title = {The continuity of superposition operators on some sequence spaces defined by moduli},
journal = {Czechoslovak Mathematical Journal},
pages = {777--792},
year = {2007},
volume = {57},
number = {3},
mrnumber = {2356280},
zbl = {1174.47048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a0/}
}
TY - JOUR AU - Kolk, Enno AU - Raidjõe, Annemai TI - The continuity of superposition operators on some sequence spaces defined by moduli JO - Czechoslovak Mathematical Journal PY - 2007 SP - 777 EP - 792 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a0/ LA - en ID - CMJ_2007_57_3_a0 ER -
Kolk, Enno; Raidjõe, Annemai. The continuity of superposition operators on some sequence spaces defined by moduli. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 777-792. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a0/
[1] J. Appell, P. P. Zabreĭko: Nonlinear Superposition Operators. Cambridge University Press, Cambridge, 1990. | MR
[2] M. Başarir: On some new sequence spaces and related matrix transformations. Indian J. Pure Appl. Math. 26 (1995), 1003–1010. | MR
[3] F. Dedagich, P. P. Zabreĭko: On superposition operators in $\ell _{p}$ spaces. Sibirsk. Mat. Zh. 28 (1987), 86–98. (Russian) | MR
[4] K.-G. Grosse-Erdmann: The structure of the sequence spaces of Maddox. Can. J. Math. 44 (1992), 298–302. | DOI | MR | Zbl
[5] Mushir A. Khan, Qamaruddin: Some generalized sequence spaces and related matrix transformations. Far East J. Math. Sci. 5 (1997), 243–252. | MR
[6] E. Kolk: Inclusion theorems for some sequence spaces defined by a sequence of moduli. Tartu Ül. Toimetised 960 (1994), 65–72. | MR
[7] E. Kolk: $F$-seminormed sequence spaces defined by a sequence of modulus functions and strong summability. Indian J. Pure Appl. Math. 28 (1997), 1447–1566. | MR | Zbl
[8] E. Kolk: Superposition operators on sequence spaces defined by $\varphi ~ $-functions. Demonstr. Math. 37 (2004), 159–175. | MR | Zbl
[9] Y. Luh: Die Räume $\ell (p)$, $\ell _\infty (p)$, $c(p)$, $c_0(p)$, $w(p)$, $w_0(p)$ and $w_\infty (p)$. Mitt. Math Sem. Giessen 180 (1987), 35–37. | MR
[10] I. J. Maddox: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166. | DOI | MR | Zbl
[11] I. J. Maddox: Inclusions between FK spaces and Kuttner’s theorem. Math. Proc. Camb. Philos. Soc. 101 (1987), 523–527. | DOI | MR | Zbl
[12] S. Petrantuarat, Y. Kemprasit: Superposition operators of $\ell _{p}$ and $c_{0}$ into $\ell _{q}$ $(1\le p, q < \infty )$. Southeast Asian Bull. Math. 21 (1997), 139–147. | MR
[13] R. Płuciennik: Continuity of superposition operators on $w_{0}$ and $W_{0}$. Commentat. Math. Univ. Carol. 31 (1990), 529–542. | MR
[14] J. Robert: Continuité d’un opérateur non linéaire sur certains espaces de suites. C. R. Acad. Sci., Paris 259 (1964), 1287–1290. | MR | Zbl
[15] W. H. Ruckle: FK spaces in which the sequence of coordinate vectors is bounded. Can. J. Math. 25 (1973), 973–978. | DOI | MR | Zbl
[16] A. Sama-ae: Boundedness and continuity of superposition operator on $E_{r}(p)$ and $F_{r}(p)$. Songklanakarin J. Sci. Technol. 24 (2002), 451–466.
[17] V. Soomer: On the sequence space defined by a sequence of moduli and on the rate-space. Acta Comment. Univ. Tartu. Math. 1 (1996), 71–74. | MR
[18] S. Suantai: Boundedness of superposition operators on $E_{r}$ and $F_{r}$. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 249–259. | MR | Zbl