The continuity of superposition operators on some sequence spaces defined by moduli
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 777-792 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\lambda $ and $\mu $ be solid sequence spaces. For a sequence of modulus functions $\Phi =(\varphi _{k})$ let $ \lambda (\Phi )= \lbrace x=(x_{k}) \: (\varphi _{k}(|x_{k}|))\in \lambda \rbrace $. Given another sequence of modulus functions $\Psi =(\psi _{k})$, we characterize the continuity of the superposition operators ${P_{f}}$ from $\lambda (\Phi )$ into $\mu (\Psi )$ for some Banach sequence spaces $\lambda $ and $\mu $ under the assumptions that the moduli $\varphi _{k}$ $(k \in \mathbb{N})$ are unbounded and the topologies on the sequence spaces $\lambda (\Phi )$ and $\mu (\Psi )$ are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type.
Let $\lambda $ and $\mu $ be solid sequence spaces. For a sequence of modulus functions $\Phi =(\varphi _{k})$ let $ \lambda (\Phi )= \lbrace x=(x_{k}) \: (\varphi _{k}(|x_{k}|))\in \lambda \rbrace $. Given another sequence of modulus functions $\Psi =(\psi _{k})$, we characterize the continuity of the superposition operators ${P_{f}}$ from $\lambda (\Phi )$ into $\mu (\Psi )$ for some Banach sequence spaces $\lambda $ and $\mu $ under the assumptions that the moduli $\varphi _{k}$ $(k \in \mathbb{N})$ are unbounded and the topologies on the sequence spaces $\lambda (\Phi )$ and $\mu (\Psi )$ are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type.
Classification : 46A45, 47H30
Keywords: sequence space; superposition operator; modulus function; continuity
@article{CMJ_2007_57_3_a0,
     author = {Kolk, Enno and Raidj\~oe, Annemai},
     title = {The continuity of superposition operators on some sequence spaces defined by moduli},
     journal = {Czechoslovak Mathematical Journal},
     pages = {777--792},
     year = {2007},
     volume = {57},
     number = {3},
     mrnumber = {2356280},
     zbl = {1174.47048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a0/}
}
TY  - JOUR
AU  - Kolk, Enno
AU  - Raidjõe, Annemai
TI  - The continuity of superposition operators on some sequence spaces defined by moduli
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 777
EP  - 792
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a0/
LA  - en
ID  - CMJ_2007_57_3_a0
ER  - 
%0 Journal Article
%A Kolk, Enno
%A Raidjõe, Annemai
%T The continuity of superposition operators on some sequence spaces defined by moduli
%J Czechoslovak Mathematical Journal
%D 2007
%P 777-792
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a0/
%G en
%F CMJ_2007_57_3_a0
Kolk, Enno; Raidjõe, Annemai. The continuity of superposition operators on some sequence spaces defined by moduli. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 777-792. http://geodesic.mathdoc.fr/item/CMJ_2007_57_3_a0/

[1] J.  Appell, P. P.  Zabreĭko: Nonlinear Superposition Operators. Cambridge University Press, Cambridge, 1990. | MR

[2] M.  Başarir: On some new sequence spaces and related matrix transformations. Indian J.  Pure Appl. Math. 26 (1995), 1003–1010. | MR

[3] F.  Dedagich, P. P.  Zabreĭko: On superposition operators in $\ell _{p}$  spaces. Sibirsk. Mat. Zh. 28 (1987), 86–98. (Russian) | MR

[4] K.-G.  Grosse-Erdmann: The structure of the sequence spaces of Maddox. Can. J.  Math. 44 (1992), 298–302. | DOI | MR | Zbl

[5] Mushir A.  Khan, Qamaruddin: Some generalized sequence spaces and related matrix transformations. Far East J.  Math. Sci. 5 (1997), 243–252. | MR

[6] E.  Kolk: Inclusion theorems for some sequence spaces defined by a sequence of moduli. Tartu Ül.  Toimetised 960 (1994), 65–72. | MR

[7] E.  Kolk: $F$-seminormed sequence spaces defined by a sequence of modulus functions and strong summability. Indian J.  Pure Appl. Math. 28 (1997), 1447–1566. | MR | Zbl

[8] E.  Kolk: Superposition operators on sequence spaces defined by  $\varphi ~ $-functions. Demonstr. Math. 37 (2004), 159–175. | MR | Zbl

[9] Y.  Luh: Die Räume  $\ell (p)$, $\ell _\infty (p)$, $c(p)$, $c_0(p)$, $w(p)$, $w_0(p)$ and $w_\infty (p)$. Mitt. Math Sem. Giessen 180 (1987), 35–37. | MR

[10] I. J.  Maddox: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166. | DOI | MR | Zbl

[11] I. J.  Maddox: Inclusions between FK spaces and Kuttner’s theorem. Math. Proc. Camb. Philos. Soc. 101 (1987), 523–527. | DOI | MR | Zbl

[12] S.  Petrantuarat, Y.  Kemprasit: Superposition operators of $\ell _{p}$ and $c_{0}$ into $\ell _{q}$ $(1\le p, q < \infty )$. Southeast Asian Bull. Math. 21 (1997), 139–147. | MR

[13] R.  Płuciennik: Continuity of superposition operators on  $w_{0}$ and $W_{0}$. Commentat. Math. Univ. Carol. 31 (1990), 529–542. | MR

[14] J.  Robert: Continuité d’un opérateur non linéaire sur certains espaces de suites. C.  R.  Acad. Sci., Paris 259 (1964), 1287–1290. | MR | Zbl

[15] W. H.  Ruckle: FK spaces in which the sequence of coordinate vectors is bounded. Can. J.  Math. 25 (1973), 973–978. | DOI | MR | Zbl

[16] A.  Sama-ae: Boundedness and continuity of superposition operator on  $E_{r}(p)$ and $F_{r}(p)$. Songklanakarin J.  Sci. Technol. 24 (2002), 451–466.

[17] V.  Soomer: On the sequence space defined by a sequence of moduli and on the rate-space. Acta Comment. Univ. Tartu. Math. 1 (1996), 71–74. | MR

[18] S.  Suantai: Boundedness of superposition operators on  $E_{r}$ and $F_{r}$. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 249–259. | MR | Zbl