Homomorphic images of finite subdirectly irreducible unary algebras
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 671-677 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that a finite unary algebra with at least two operation symbols is a homomorphic image of a (finite) subdirectly irreducible algebra if and only if the intersection of all its subalgebras which have at least two elements is nonempty.
We prove that a finite unary algebra with at least two operation symbols is a homomorphic image of a (finite) subdirectly irreducible algebra if and only if the intersection of all its subalgebras which have at least two elements is nonempty.
Classification : 08A60, 08B26
Keywords: subdirectly irreducible unary algebra
@article{CMJ_2007_57_2_a9,
     author = {Je\v{z}ek, J. and Markovi\'c, P. and Stanovsk\'y, D.},
     title = {Homomorphic images of finite subdirectly irreducible unary algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {671--677},
     year = {2007},
     volume = {57},
     number = {2},
     mrnumber = {2337621},
     zbl = {1174.08304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a9/}
}
TY  - JOUR
AU  - Ježek, J.
AU  - Marković, P.
AU  - Stanovský, D.
TI  - Homomorphic images of finite subdirectly irreducible unary algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 671
EP  - 677
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a9/
LA  - en
ID  - CMJ_2007_57_2_a9
ER  - 
%0 Journal Article
%A Ježek, J.
%A Marković, P.
%A Stanovský, D.
%T Homomorphic images of finite subdirectly irreducible unary algebras
%J Czechoslovak Mathematical Journal
%D 2007
%P 671-677
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a9/
%G en
%F CMJ_2007_57_2_a9
Ježek, J.; Marković, P.; Stanovský, D. Homomorphic images of finite subdirectly irreducible unary algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 671-677. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a9/

[1] S.  Bulman-Fleming, E.  Hotzel, and J.  Wang: Semigroups that are factors of subdirectly irreducible semigroups by their monolith. Algebra Universalis 51 (2004), 1–7. | DOI | MR

[2] J.  Ježek, T.  Kepka: The factor of a subdirectly irreducible algebra through its monolith. Algebra Universalis 47 (2002), 319–327. | DOI | MR

[3] T.  Kepka: On a class of subdirectly irreducible groupoids. Acta Univ. Carolinae Math. Phys. 22 (1981), 17–24. | MR | Zbl

[4] T.  Kepka: A note on subdirectly irreducible groupoids. Acta Univ. Carolinae Math. Phys. 22 (1981), 25–28. | MR | Zbl

[5] T.  Kepka: On a class of groupoids. Acta Univ. Carolinae Math. Phys. 22 (1981), 29–49. | MR | Zbl

[6] R.  McKenzie, G.  McNulty, and W.  Taylor: Algebras, Lattices, Varieties, Volume  I. Wadsworth & Brooks/Cole, Monterey, 1987. | MR

[7] R.  McKenzie, D.  Stanovský: Every quasigroup is isomorphic to a subdirectly irreducible quasigroup modulo its monolith. Acta Sci. Math. (Szeged) 72 (2006), 59–64. | MR

[8] D.  Stanovský: Homomorphic images of subdirectly irreducible groupoids. Comment. Math. Univ. Carolinae 42 (2001), 443–450. | MR

[9] M.  Yoeli: Subdirectly irreducible unary algebras. Am. Math. Mon. 74 (1967), 957–960. | DOI | MR | Zbl