Homomorphic images of finite subdirectly irreducible unary algebras
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 671-677
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that a finite unary algebra with at least two operation symbols is a homomorphic image of a (finite) subdirectly irreducible algebra if and only if the intersection of all its subalgebras which have at least two elements is nonempty.
We prove that a finite unary algebra with at least two operation symbols is a homomorphic image of a (finite) subdirectly irreducible algebra if and only if the intersection of all its subalgebras which have at least two elements is nonempty.
@article{CMJ_2007_57_2_a9,
author = {Je\v{z}ek, J. and Markovi\'c, P. and Stanovsk\'y, D.},
title = {Homomorphic images of finite subdirectly irreducible unary algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {671--677},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337621},
zbl = {1174.08304},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a9/}
}
TY - JOUR AU - Ježek, J. AU - Marković, P. AU - Stanovský, D. TI - Homomorphic images of finite subdirectly irreducible unary algebras JO - Czechoslovak Mathematical Journal PY - 2007 SP - 671 EP - 677 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a9/ LA - en ID - CMJ_2007_57_2_a9 ER -
Ježek, J.; Marković, P.; Stanovský, D. Homomorphic images of finite subdirectly irreducible unary algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 671-677. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a9/