@article{CMJ_2007_57_2_a8,
author = {Galewski, M. and P{\l}\'ocienniczak, M.},
title = {On the existence and the stability of solutions for higher-order semilinear {Dirichlet} problems},
journal = {Czechoslovak Mathematical Journal},
pages = {647--669},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337620},
zbl = {1174.35029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a8/}
}
TY - JOUR AU - Galewski, M. AU - Płócienniczak, M. TI - On the existence and the stability of solutions for higher-order semilinear Dirichlet problems JO - Czechoslovak Mathematical Journal PY - 2007 SP - 647 EP - 669 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a8/ LA - en ID - CMJ_2007_57_2_a8 ER -
Galewski, M.; Płócienniczak, M. On the existence and the stability of solutions for higher-order semilinear Dirichlet problems. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 647-669. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a8/
[1] A. Boucherif, Nawal Al-Malki: Solvability of a two point boundary value problem. Int. J. Differ. Equ. Appl. 8 (2003), 129–135. | MR
[2] D. Delbosco: A two point boundary value problem for a second order differential equation with quadratic growth in the derivative. Differ. Integral Equ. 16 (2003), 653–662. | MR | Zbl
[3] G. Dinca, P. Jeblean: Some existence results for a class of nonlinear equations involving a duality mapping. Nonlinear Anal., Theory Methods Appl. 46 (2001), 347–363. | DOI | MR
[4] I. Ekeland, R. Temam: Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976. | MR
[5] M. Galewski: New variational principle and duality for an abstract semilinear Dirichlet problem. Ann. Pol. Math. 82 (2003), 51–60. | DOI | MR
[6] M. Galewski: Stability of solutions for an abstract Dirichlet problem. Ann. Pol. Math. 83 (2004), 273–280. | DOI | MR | Zbl
[7] M. Galewski: The existence of solutions for a semilinear abstract Dirichlet problem. Georgian Math. J. 11 (2004), 243–254. | MR | Zbl
[8] D. Idczak: Stability in semilinear problems. J. Differ. Equations 162 (2000), 64–90. | DOI | MR | Zbl
[9] D. Idczak, A. Rogowski: On a generalization of Krasnoselskii’s theorem. J. Aust. Math. Soc. 72 (2002), 389–394. | DOI | MR
[10] T. Kato: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin-Heidelberg-New York, 1980. | Zbl
[11] Y. Li: Positive solutions of fourth order periodic boundary value problem. Nonlinear Anal., Theory Methods Appl. 54 (2003), 1069–1078. | DOI | MR
[12] Y. Liu, W. Ge: Solvability of a two point boundary value problem at resonance for high-order ordinary differential equations. Math. Sci. Res. J., 7 (2003), 406–429. | MR
[13] Y. Liu, W. Ge: Solvability of a two point boundary value problems for fourth-order nonlinear differential equations at resonance. Z. Anal. Anwend. 22 (2003), 977–989. | MR
[14] A. Lomtatidze, L. Malaguti: On a two-point boundary value problem for the second order ordinary differential equations with singularities. Nonlinear Anal., Theory Methods Appl. 52 (2003), 1553–1567. | DOI | MR
[15] J. Mawhin: Problemes de Dirichlet variationnels non linéaires. Presses Univ. Montréal, Montréal, 1987. (French) | MR | Zbl
[16] A. Nowakowski, A. Rogowski: Dependence on parameters for the Dirichlet problem with superlinear nonlinearities. Topol. Methods Nonlinear Anal. 16 (2000), 145–130. | DOI | MR
[17] A. Nowakowski, A. Rogowski: On the new variational principles and duality for periodic of Lagrange equations with superlinear nonlinearities. J. Math. Anal. Appl. 264 (2001), 168–181. | DOI | MR
[18] D. R. Smart: Fixed Point Theorems. Cambridge University Press, London-New York, 1974. | MR | Zbl
[19] S. Walczak: On the continuous dependence on parameters of solutions of the Dirichlet problem. Part I. Coercive case, Part II. The case of saddle points. Bull. Cl. Sci., VII. Sér., Acad. R. Belg. 6 (1995), 247–273. | MR
[20] S. Walczak: Continuous dependence on parameters and boundary data for nonlinear P.D.E. coercive case. Differ. Integral Equ. 11 (1998), 35–46. | MR | Zbl