Extensional subobjects in categories of $\Omega$-fuzzy sets
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 631-645 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Two categories $\mathbb{Set}(\Omega )$ and $\mathbb{SetF}(\Omega )$ of fuzzy sets over an $MV$-algebra $\Omega $ are investigated. Full subcategories of these categories are introduced consisting of objects $(\mathop {{\mathrm sub}}(A,\delta )$, $\sigma )$, where $\mathop {{\mathrm sub}}(A,\delta )$ is a subset of all extensional subobjects of an object $(A,\delta )$. It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.
Two categories $\mathbb{Set}(\Omega )$ and $\mathbb{SetF}(\Omega )$ of fuzzy sets over an $MV$-algebra $\Omega $ are investigated. Full subcategories of these categories are introduced consisting of objects $(\mathop {{\mathrm sub}}(A,\delta )$, $\sigma )$, where $\mathop {{\mathrm sub}}(A,\delta )$ is a subset of all extensional subobjects of an object $(A,\delta )$. It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.
Classification : 03E72, 06D35, 18A40
Keywords: $MV$-algebras; similarity relation; quasi-reflective subcategory
@article{CMJ_2007_57_2_a7,
     author = {Mo\v{c}ko\v{r}, Ji\v{r}{\'\i}},
     title = {Extensional subobjects in categories of $\Omega$-fuzzy sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {631--645},
     year = {2007},
     volume = {57},
     number = {2},
     mrnumber = {2337619},
     zbl = {1174.06320},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a7/}
}
TY  - JOUR
AU  - Močkoř, Jiří
TI  - Extensional subobjects in categories of $\Omega$-fuzzy sets
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 631
EP  - 645
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a7/
LA  - en
ID  - CMJ_2007_57_2_a7
ER  - 
%0 Journal Article
%A Močkoř, Jiří
%T Extensional subobjects in categories of $\Omega$-fuzzy sets
%J Czechoslovak Mathematical Journal
%D 2007
%P 631-645
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a7/
%G en
%F CMJ_2007_57_2_a7
Močkoř, Jiří. Extensional subobjects in categories of $\Omega$-fuzzy sets. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 631-645. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a7/

[1] Eytan, M.: Fuzzy sets: a topos-logical point of view. Fuzzy Sets and Systems 5 (1981), 47–67. | DOI | MR | Zbl

[2] Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appli. 18 (1967), 145–174. | DOI | MR | Zbl

[3] Higgs, D.: A category approach to Boolean-valued set theory. Manuscript, University of Waterloo, 1973.

[4] Höhle, U.: Presheaves over GL-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, New York (1995), 127–157. | MR

[5] Höhle, U.: M-Valued sets and sheaves over integral, commutative cl-monoids. Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, Boston (1992), 33–72. | MR

[6] Höhle, U.: Classification of Subsheaves over GL-algebras. Proceedings of Logic Colloquium 98 Prague, Springer Verlag (1999), 238–261. | MR

[7] Höhle, U.: Commutative, residuated l-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ. Dordrecht, New York (1995), 53–106. | MR

[8] Höhle, U.: Monoidal closed categories, weak topoi and generalized logics. Fuzzy Sets and Systems 42 (1991), 15–35. | DOI | MR

[9] Močkoř, J.: Complete subobjects of fuzzy sets over $MV$-algebras. Czech. Math. J. 129 (2004), 379–392. | DOI | MR

[10] Novák, V., Perfilijeva, I., Močkoř, J.: Mathematical principles of fuzzy logic. Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. | MR

[11] Ponasse, D.: Categorical studies of fuzzy sets. Fuzzy Sets and Systems 28 (1988), 235–244. | DOI | MR | Zbl