Keywords: $MV$-algebras; similarity relation; quasi-reflective subcategory
@article{CMJ_2007_57_2_a7,
author = {Mo\v{c}ko\v{r}, Ji\v{r}{\'\i}},
title = {Extensional subobjects in categories of $\Omega$-fuzzy sets},
journal = {Czechoslovak Mathematical Journal},
pages = {631--645},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337619},
zbl = {1174.06320},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a7/}
}
Močkoř, Jiří. Extensional subobjects in categories of $\Omega$-fuzzy sets. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 631-645. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a7/
[1] Eytan, M.: Fuzzy sets: a topos-logical point of view. Fuzzy Sets and Systems 5 (1981), 47–67. | DOI | MR | Zbl
[2] Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appli. 18 (1967), 145–174. | DOI | MR | Zbl
[3] Higgs, D.: A category approach to Boolean-valued set theory. Manuscript, University of Waterloo, 1973.
[4] Höhle, U.: Presheaves over GL-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, New York (1995), 127–157. | MR
[5] Höhle, U.: M-Valued sets and sheaves over integral, commutative cl-monoids. Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, Boston (1992), 33–72. | MR
[6] Höhle, U.: Classification of Subsheaves over GL-algebras. Proceedings of Logic Colloquium 98 Prague, Springer Verlag (1999), 238–261. | MR
[7] Höhle, U.: Commutative, residuated l-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ. Dordrecht, New York (1995), 53–106. | MR
[8] Höhle, U.: Monoidal closed categories, weak topoi and generalized logics. Fuzzy Sets and Systems 42 (1991), 15–35. | DOI | MR
[9] Močkoř, J.: Complete subobjects of fuzzy sets over $MV$-algebras. Czech. Math. J. 129 (2004), 379–392. | DOI | MR
[10] Novák, V., Perfilijeva, I., Močkoř, J.: Mathematical principles of fuzzy logic. Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. | MR
[11] Ponasse, D.: Categorical studies of fuzzy sets. Fuzzy Sets and Systems 28 (1988), 235–244. | DOI | MR | Zbl