Lexicographic product decompositions of half linearly ordered loops
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 607-629 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove for an hl-loop $Q$ an assertion analogous to the result of Jakubík concerning lexicographic products of half linearly ordered groups. We found conditions under which any two lexicographic product decompositions of an hl-loop $Q$ with a finite number of lexicographic factors have isomorphic refinements.
In this paper we prove for an hl-loop $Q$ an assertion analogous to the result of Jakubík concerning lexicographic products of half linearly ordered groups. We found conditions under which any two lexicographic product decompositions of an hl-loop $Q$ with a finite number of lexicographic factors have isomorphic refinements.
Classification : 06F99, 20N05
Keywords: half linearly ordered quasigroup; half linearly ordered loop; lexicographic product; isomorphic refinements
@article{CMJ_2007_57_2_a6,
     author = {Demko, Milan},
     title = {Lexicographic product decompositions of half linearly ordered loops},
     journal = {Czechoslovak Mathematical Journal},
     pages = {607--629},
     year = {2007},
     volume = {57},
     number = {2},
     mrnumber = {2337618},
     zbl = {1174.06325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a6/}
}
TY  - JOUR
AU  - Demko, Milan
TI  - Lexicographic product decompositions of half linearly ordered loops
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 607
EP  - 629
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a6/
LA  - en
ID  - CMJ_2007_57_2_a6
ER  - 
%0 Journal Article
%A Demko, Milan
%T Lexicographic product decompositions of half linearly ordered loops
%J Czechoslovak Mathematical Journal
%D 2007
%P 607-629
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a6/
%G en
%F CMJ_2007_57_2_a6
Demko, Milan. Lexicographic product decompositions of half linearly ordered loops. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 607-629. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a6/

[1] V. D. Belousov: Foundations of the theory of quasigroups and loops. Nauka Moscow, 1967. (Russian) | MR

[2] Š. Černák: Lexicographic products of cyclically ordered groups. Math. Slovaca 45 (1995), 29–38. | MR

[3] M. Demko: Lexicographic product decompositions of partially ordered quasigroups. Math. Slovaca 51 (2001), 13–24. | MR | Zbl

[4] M. Demko: On half linearly ordered quasigroups. Acta Facultatis Prešov 39 (2002), 39–45.

[5] L. Fuchs: Partially ordered algebraic systems. Pergamon Press, Oxford-London-New York-Paris, 1963. | MR | Zbl

[6] M. Giraudet and F. Lucas: Groupes à moitié ordonnés. Fund. Math. 139 (1991), 75–89. | DOI | MR

[7] J. Jakubík: Lexicographic products of partially ordered groupoids. Czech. Math. J. 14 (1964), 281–305. (Russian) | MR

[8] J. Jakubík: Lexicographic product decompositions of cyclically ordered groups. Czech. Math. J. 48 (1998), 229–241. | DOI | MR

[9] J. Jakubík: Lexicographic products of half linearly ordered groups. Czech. Math. J. 51 (2001), 127–138. | DOI | MR

[10] A. I. Maltsev: On ordered group. Izv. Akad. Nauk SSSR, Ser. Matem. 13 (1949), 473–482. (Russian)