Ultra $LI$-Ideals in lattice implication algebras and $MTL$-algebras
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 591-605 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A mistake concerning the ultra $LI$-ideal of a lattice implication algebra is pointed out, and some new sufficient and necessary conditions for an $LI$-ideal to be an ultra $LI$-ideal are given. Moreover, the notion of an $LI$-ideal is extended to $MTL$-algebras, the notions of a (prime, ultra, obstinate, Boolean) $LI$-ideal and an $ILI$-ideal of an $MTL$-algebra are introduced, some important examples are given, and the following notions are proved to be equivalent in $MTL$-algebra: (1) prime proper $LI$-ideal and Boolean $LI$-ideal, (2) prime proper $LI$-ideal and $ILI$-ideal, (3) proper obstinate $LI$-ideal, (4) ultra $LI$-ideal.
A mistake concerning the ultra $LI$-ideal of a lattice implication algebra is pointed out, and some new sufficient and necessary conditions for an $LI$-ideal to be an ultra $LI$-ideal are given. Moreover, the notion of an $LI$-ideal is extended to $MTL$-algebras, the notions of a (prime, ultra, obstinate, Boolean) $LI$-ideal and an $ILI$-ideal of an $MTL$-algebra are introduced, some important examples are given, and the following notions are proved to be equivalent in $MTL$-algebra: (1) prime proper $LI$-ideal and Boolean $LI$-ideal, (2) prime proper $LI$-ideal and $ILI$-ideal, (3) proper obstinate $LI$-ideal, (4) ultra $LI$-ideal.
Classification : 03G10, 06B10, 54E15
Keywords: lattice implication algebra; $MTL$-algebra; (prime; ultra; obstinate; Boolean) $LI$-ideal; $ILI$-ideal
@article{CMJ_2007_57_2_a5,
     author = {Zhang, Xiaohong and Qin, Keyun and Dudek, Wies{\l}aw A.},
     title = {Ultra $LI${-Ideals} in lattice implication algebras and $MTL$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {591--605},
     year = {2007},
     volume = {57},
     number = {2},
     mrnumber = {2337617},
     zbl = {1174.03349},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a5/}
}
TY  - JOUR
AU  - Zhang, Xiaohong
AU  - Qin, Keyun
AU  - Dudek, Wiesław A.
TI  - Ultra $LI$-Ideals in lattice implication algebras and $MTL$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 591
EP  - 605
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a5/
LA  - en
ID  - CMJ_2007_57_2_a5
ER  - 
%0 Journal Article
%A Zhang, Xiaohong
%A Qin, Keyun
%A Dudek, Wiesław A.
%T Ultra $LI$-Ideals in lattice implication algebras and $MTL$-algebras
%J Czechoslovak Mathematical Journal
%D 2007
%P 591-605
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a5/
%G en
%F CMJ_2007_57_2_a5
Zhang, Xiaohong; Qin, Keyun; Dudek, Wiesław A. Ultra $LI$-Ideals in lattice implication algebras and $MTL$-algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 591-605. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a5/

[1] R. Bělohlávek: Some properties of residuated lattices. Czechoslovak Math. J. 53(128) (2003), 161–171. | DOI | MR

[2] W. A. Dudek, X. H. Zhang: On ideals and congruences in $BCC$-algebras. Czechoslovak Math. J. 48(123) (1998), 21–29. | DOI | MR

[3] F. Esteva, L. Godo: Monoidal $t$-norm based logic: Towards a logic for left-continuous $t$-norms. Fuzzy Sets Syst. 124 (2001), 271–288. | MR

[4] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, 1998. | MR

[5] S. Jenei, F. Montagna: A proof of standard completeness for Esteva and Godo’s logic  $MTL$. Studia Logica 70 (2002), 183–192. | DOI | MR

[6] Y. B. Jun: On $LI$-ideals and prime $LI$-ideals of lattice implication alebras. J.  Korean Math. Soc. 36 (1999), 369–380. | MR

[7] Y. B. Jun, E. H. Roh, Y. Xu: $LI$-ideals in lattice implication algebras. Bull. Korean Math. Soc. 35 (1998), 13–24. | MR

[8] Y. B. Jun, Y. Xu: Fuzzy $LI$-ideals in lattice implication algebras. J.  Fuzzy Math. 7 (1999), 997–1003. | MR | Zbl

[9] Y. L. Liu, S. Y. Liu, Y. Xu, K. Y. Qin: $ILI$-ideals and prime $LI$-ideals in lattice implication algebras. Information Sciences 155 (2003), 157–175. | DOI | MR

[10] C. Noguera, F. Esteva, J. Gispert: On some varieties of $MTL$-algebras. Log.  J.  IGPL 13 (2005), 443–466. | DOI | MR

[11] K. Y. Qin, Y. Xu, Y. B. Jun: Ultra $LI$-ideals in lattice implication algebras. Czechoslovak Math.  J. 52(127) (2002), 463–468. | DOI | MR

[12] E. Turunen: Boolean deductive systems of $BL$-algebras. Arch. Math. Logic 40 (2001), 467–473. | DOI | MR | Zbl

[13] G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning. Science Press, Beijing, 2000. (Chinese)

[14] G. J. Wang: $MV$-algebras, $BL$-algebras, $R_0$-algebras and multiple-valued logic. Fuzzy Systems and Mathematics 16 (2002), 1–15. (Chinese) | MR

[15] Y. Xu: Lattice implication algebras. J.  South West Jiaotong University 1 (1993), 20–27. | Zbl

[16] Y. Xu, K. Y. Qin: On filters of lattice implication algebras. J.  Fuzzy Math. 1 (1993), 251–260. | MR

[17] Y. Xu, D. Ruan, K. Y. Qin, J. Li: Lattice-valued Logic. An alternative approach to treat fuzziness and incomparability. Studies in Fuzzines and Soft Computing  132, Springer-Verlag, , 2003. | MR

[18] X. H. Zhang, W. H. Li: On fuzzy logic algebraic system  $MTL$. Advances in Systems and Applications 5 (2005), 475–483.