Keywords: lattice implication algebra; $MTL$-algebra; (prime; ultra; obstinate; Boolean) $LI$-ideal; $ILI$-ideal
@article{CMJ_2007_57_2_a5,
author = {Zhang, Xiaohong and Qin, Keyun and Dudek, Wies{\l}aw A.},
title = {Ultra $LI${-Ideals} in lattice implication algebras and $MTL$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {591--605},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337617},
zbl = {1174.03349},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a5/}
}
TY - JOUR AU - Zhang, Xiaohong AU - Qin, Keyun AU - Dudek, Wiesław A. TI - Ultra $LI$-Ideals in lattice implication algebras and $MTL$-algebras JO - Czechoslovak Mathematical Journal PY - 2007 SP - 591 EP - 605 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a5/ LA - en ID - CMJ_2007_57_2_a5 ER -
Zhang, Xiaohong; Qin, Keyun; Dudek, Wiesław A. Ultra $LI$-Ideals in lattice implication algebras and $MTL$-algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 591-605. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a5/
[1] R. Bělohlávek: Some properties of residuated lattices. Czechoslovak Math. J. 53(128) (2003), 161–171. | DOI | MR
[2] W. A. Dudek, X. H. Zhang: On ideals and congruences in $BCC$-algebras. Czechoslovak Math. J. 48(123) (1998), 21–29. | DOI | MR
[3] F. Esteva, L. Godo: Monoidal $t$-norm based logic: Towards a logic for left-continuous $t$-norms. Fuzzy Sets Syst. 124 (2001), 271–288. | MR
[4] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, 1998. | MR
[5] S. Jenei, F. Montagna: A proof of standard completeness for Esteva and Godo’s logic $MTL$. Studia Logica 70 (2002), 183–192. | DOI | MR
[6] Y. B. Jun: On $LI$-ideals and prime $LI$-ideals of lattice implication alebras. J. Korean Math. Soc. 36 (1999), 369–380. | MR
[7] Y. B. Jun, E. H. Roh, Y. Xu: $LI$-ideals in lattice implication algebras. Bull. Korean Math. Soc. 35 (1998), 13–24. | MR
[8] Y. B. Jun, Y. Xu: Fuzzy $LI$-ideals in lattice implication algebras. J. Fuzzy Math. 7 (1999), 997–1003. | MR | Zbl
[9] Y. L. Liu, S. Y. Liu, Y. Xu, K. Y. Qin: $ILI$-ideals and prime $LI$-ideals in lattice implication algebras. Information Sciences 155 (2003), 157–175. | DOI | MR
[10] C. Noguera, F. Esteva, J. Gispert: On some varieties of $MTL$-algebras. Log. J. IGPL 13 (2005), 443–466. | DOI | MR
[11] K. Y. Qin, Y. Xu, Y. B. Jun: Ultra $LI$-ideals in lattice implication algebras. Czechoslovak Math. J. 52(127) (2002), 463–468. | DOI | MR
[12] E. Turunen: Boolean deductive systems of $BL$-algebras. Arch. Math. Logic 40 (2001), 467–473. | DOI | MR | Zbl
[13] G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning. Science Press, Beijing, 2000. (Chinese)
[14] G. J. Wang: $MV$-algebras, $BL$-algebras, $R_0$-algebras and multiple-valued logic. Fuzzy Systems and Mathematics 16 (2002), 1–15. (Chinese) | MR
[15] Y. Xu: Lattice implication algebras. J. South West Jiaotong University 1 (1993), 20–27. | Zbl
[16] Y. Xu, K. Y. Qin: On filters of lattice implication algebras. J. Fuzzy Math. 1 (1993), 251–260. | MR
[17] Y. Xu, D. Ruan, K. Y. Qin, J. Li: Lattice-valued Logic. An alternative approach to treat fuzziness and incomparability. Studies in Fuzzines and Soft Computing 132, Springer-Verlag, , 2003. | MR
[18] X. H. Zhang, W. H. Li: On fuzzy logic algebraic system $MTL$. Advances in Systems and Applications 5 (2005), 475–483.