Exchange rings with stable range one
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 579-590 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize exchange rings having stable range one. An exchange ring $R$ has stable range one if and only if for any regular $a\in R$, there exist an $e\in E(R)$ and a $u\in U(R)$ such that $a=e+u$ and $aR\cap eR=0$ if and only if for any regular $a\in R$, there exist $e\in r.ann(a^+)$ and $u\in U(R)$ such that $a=e+u$ if and only if for any $a,b\in R$, $R/aR\cong R/bR\Longrightarrow aR\cong bR$.
We characterize exchange rings having stable range one. An exchange ring $R$ has stable range one if and only if for any regular $a\in R$, there exist an $e\in E(R)$ and a $u\in U(R)$ such that $a=e+u$ and $aR\cap eR=0$ if and only if for any regular $a\in R$, there exist $e\in r.ann(a^+)$ and $u\in U(R)$ such that $a=e+u$ if and only if for any $a,b\in R$, $R/aR\cong R/bR\Longrightarrow aR\cong bR$.
Classification : 16D70, 16E20, 16E50, 16U99, 19B10
Keywords: exchange ring; stable range one; idempotent; unit
@article{CMJ_2007_57_2_a4,
     author = {Chen, Huanyin},
     title = {Exchange rings with stable range one},
     journal = {Czechoslovak Mathematical Journal},
     pages = {579--590},
     year = {2007},
     volume = {57},
     number = {2},
     mrnumber = {2337616},
     zbl = {1161.16008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a4/}
}
TY  - JOUR
AU  - Chen, Huanyin
TI  - Exchange rings with stable range one
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 579
EP  - 590
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a4/
LA  - en
ID  - CMJ_2007_57_2_a4
ER  - 
%0 Journal Article
%A Chen, Huanyin
%T Exchange rings with stable range one
%J Czechoslovak Mathematical Journal
%D 2007
%P 579-590
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a4/
%G en
%F CMJ_2007_57_2_a4
Chen, Huanyin. Exchange rings with stable range one. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 579-590. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a4/

[1] P. Ara: The exchange property for purely infinite simple rings. Proc. Amer. Math. Soc. 132 (2004), 2543–2547. | DOI | MR | Zbl

[2] P. Ara: Strongly $\pi $-regular rings have stable range one. Proc. Amer. Math. Soc. 124 (1996), 3293–3298. | DOI | MR | Zbl

[3] P. Ara, K. R. Goodearl, K. C. O’Meara and E. Pardo: Separative cancellation for projective modules over exchange rings. Israel J. Math. 105 (1998), 105–137. | DOI | MR

[4] V. P. Camillo and D. A. Khurana: Characterization of unit regular rings. Comm. Algebra 29 (2001), 2293–2295. | DOI | MR

[5] V. P. Camillo and H. P. Yu: Stable range one for rings with many idempotents. Trans. Amer. Math. Soc. 347 (1995), 3141–3147. | DOI | MR

[6] M. J. Canfell: Completion of diagrams by automorphisms and Bass’s first stable range condition. J. Algebra 176 (1995), 480–503. | DOI | MR

[7] H. Chen: Full elements in regular rings. Taiwanese J. Math. 8 (2004), 203–209. | DOI | MR | Zbl

[8] H. Chen and M. Chen: Regular elements which is a sum of an idempotent and a left cancellable element. Taiwanese J. Math. 10 (2006), 881–890. | DOI | MR

[9] K. R. Goodearl: Von Neumann Regular Rings. Pitman, London-San Francisco-Melbourne, 1979; 2nd ed., Krieger, Malabar, Fl., 1991. | MR | Zbl

[10] R. M. Guralnick: Matrix equivalence and isomorphism of modules. Linear Algebra Appl. 43 (1982), 125–136. | DOI | MR | Zbl

[11] R. E. Hartwig and J. Luh: A note on the group structure of unit regular ring elements. Pacific J. Math. 71 (1977), 449–461. | DOI | MR

[12] D. Khurana and T. Y. Lam: Clean matrices and unit-regular matrices. J. Algebra 280 (2004), 683–698. | DOI | MR

[13] T. Y. Lam: A crash course on stable range, cancellation, substitution, and exchange. J. Algebra Appl. 3 (2004), 301–343. | DOI | MR | Zbl

[14] W. K. Nicholson: Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229 (1977), 269–278. | DOI | MR | Zbl

[15] W. K. Nicholson: Extensions of clean rings. Comm. Algebra 29 (2001), 2589–2595. | DOI | MR | Zbl

[16] W. K. Nicholson and K. Varadarjan: Countable linear transformations are clean. Proc. Amer. Math. Soc. 126 (1998), 61–64. | DOI | MR

[17] H. P. Yu: Stable range one for exchange rings. J. Pure. Appl. Algebra 98 (1995), 105–109. | DOI | MR | Zbl