Keywords: unary algebra; subdirect product; variety; directable algebra
@article{CMJ_2007_57_2_a3,
author = {\'Ciri\'c, M. and Petkovi\'c, T. and Bogdanovi\'c, S.},
title = {Subdirect products of certain varieties of unary algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {573--578},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337615},
zbl = {1174.08301},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a3/}
}
Ćirić, M.; Petković, T.; Bogdanović, S. Subdirect products of certain varieties of unary algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 573-578. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a3/
[1] C. J. Ash: Pseudovarieties, generalized varieties and similarly described classes. J. Algebra 92 (1985), 104–115. | MR | Zbl
[2] S. Bogdanović, M. Ćirić, B. Imreh, T. Petković, and M. Steinby: On local properties of unary algebras. Algebra Colloquium 10 (2003), 461–478. | MR
[3] S. Bogdanović, M. Ćirić, and T. Petković: Generalized varieties of algebras. Internat. J. Algebra Comput, Submitted.
[4] S. Bogdanović, M. Ćirić, T. Petković, B. Imreh, and M. Steinby: Traps, cores, extensions and subdirect decompositions of unary algebras. Fundamenta Informaticae 34 (1999), 51–60. | DOI | MR
[5] S. Bogdanović, B. Imreh, M. Ćirić, and T. Petković: Directable automata and their generalizations. A survey. Novi Sad J. Math. 29 (1999), 31–74. | MR
[6] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, New York, 1981. | MR
[7] M. Ćirić, S. Bogdanović: Lattices of subautomata and direct sum decompositions of automata. Algebra Colloquium 6 (1999), 71–88. | MR
[8] F. Gécseg, I. Peák: Algebraic Theory of Automata. Akadémiai Kiadó, Budapest, 1971. | MR
[9] G. Grätzer: Universal Algebra, 2nd ed. Springer-Verlag, New York-Heidelberg-Berlin, 1979. | MR
[10] T. Petković, M. Ćirić, and S. Bogdanović: Decompositions of automata and transition semigroups. Acta Cybernetica (Szeged) 13 (1998), 385–403. | MR
[11] J. Płonka: On the sum of a system of disjoint unary algebras corresponding to a given type. Bull. Acad. Pol. Sci., Ser. Sci. Math. 30 (1982), 305–309. | MR
[12] J. Płonka: On the lattice of varieties of unary algebras. Simon Stevin 59 (1985), 353–364. | MR