Keywords: inequality; norm; summability matrix; Hausdorff matrix; Nörlund matrix; weighted mean matrix; weighted sequence space and Lorentz sequence space
@article{CMJ_2007_57_2_a2,
author = {Lashkaripour, R. and Foroutannia, D.},
title = {Some inequalities involving upper bounds for some matrix operators. {I}},
journal = {Czechoslovak Mathematical Journal},
pages = {553--572},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337614},
zbl = {1174.15017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a2/}
}
Lashkaripour, R.; Foroutannia, D. Some inequalities involving upper bounds for some matrix operators. I. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 553-572. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a2/
[1] G. Bennett: Factorizing the classical inequalities. Mem. Amer. Math. Soc. 576 (1996), 1–130. | MR | Zbl
[2] G. Bennett: Inequalities complimentary to Hardy. Quart. J. Math. Oxford (2) 49 (1998), 395–432. | MR | Zbl
[3] D. Borwein and F. P. Cass: Nörlund matrices as bounded operators on $l_p$. Arch. Math. 42 (1984), 464–469. | DOI | MR
[4] D. Borwein: Nörlund operators on $l_p$. Canada. Math. Bull. 36 (1993), 8–14. | DOI | MR
[5] G. H. Hardy: An inequality for Hausdorff means. J. London Math. Soc. 18 (1943), 46–50. | MR | Zbl
[6] G. H. Hardy: Divergent Series. 2nd edition, American Mathematical Society, 2000.
[7] G. H. Hardy and J. E. Littlewood: A maximal theorem with function-theoretic. Acta Math. 54 (1930), 81–116. | DOI | MR
[8] G. H. Hardy, J. E. Littlewood and G. Polya: Inequalities. 2nd edition, Cambridge University press, Cambridge, 2001. | MR
[9] G. J. O. Jameson and R. Lashkaripour: Lower bounds of operators on weighted $l_p$ spaces and Lorentz sequence spaces. Glasgow Math. J. 42 (2000), 211–223. | DOI | MR
[10] G. J. O. Jameson and R. Lashkaripour: Norms of certain operators on weighted $l_p$ spaces and Lorentz sequence spaces. J. Inequalities in Pure and Applied Mathematics, 3, Issue 1, Article 6 (2002). | MR
[11] R. Lashkaripour: Lower bounds and norms of operators on Lorentz sequence spaces. Doctoral dissertation (Lancaster, 1997).
[12] R. Lashkaripour: Transpose of the Weighted Mean operators on Weighted Sequence Spaces. WSEAS Transaction on Mathematics, Issue 4, 4 (2005), 380–385. | MR
[13] R. Lashkaripour and D. Foroutannia: Lower Bounds for Matrices on Weighted Sequence Spaces. Journal of Sciences Islamic Republic of IRAN, 18 (2007), 49–56. | MR
[14] J. Pecaric, I. Peric and R. Roki: On bounds for weighted norms for matrices and integral operators. Linear Algebra and Appl. 326 (2001), 121–135. | MR