Keywords: compact approximation property; weakly compact approximation property; ideals of homogeneous polynomials
@article{CMJ_2007_57_2_a17,
author = {\c{C}al{\i}\c{s}kan, Erhan},
title = {Ideals of homogeneous polynomials and weakly compact approximation property in {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {763--776},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337629},
zbl = {1174.46008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a17/}
}
TY - JOUR AU - Çalışkan, Erhan TI - Ideals of homogeneous polynomials and weakly compact approximation property in Banach spaces JO - Czechoslovak Mathematical Journal PY - 2007 SP - 763 EP - 776 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a17/ LA - en ID - CMJ_2007_57_2_a17 ER -
Çalışkan, Erhan. Ideals of homogeneous polynomials and weakly compact approximation property in Banach spaces. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 763-776. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a17/
[1] R. M. Aron, G. Galindo: Weakly compact multilinear mappings. Proc. Edinb. Math. Soc. 40 (1997), 181–192. | DOI | MR
[2] R. M. Aron, C. Hervés, and M. Valdivia: Weakly continuous mappings on Banach spaces. J. Funct. Anal. 52 (1983), 189–204. | DOI | MR
[3] K. Astala, H.-O. Tylli: Seminorms related to weak compactness and to Tauberian operators. Math. Proc. Camb. Philos. Soc. 107 (1990), 367–375. | DOI | MR
[4] G. Botelho: Weakly compact and absolutely summing polynomials. J. Math. Anal. Appl. 265 (2002), 458–462. | DOI | MR | Zbl
[5] G. Botelho: Ideals of polynomials generated by weakly compact operators. Note Mat. 25 (2005/2006), 69–102. | MR
[6] G. Botelho, D. M. Pellegrino: Two new properties of ideals of polynomials and applications. Indag. Math. 16 (2005), 157–169. | DOI | MR
[7] C. Boyd: Montel and reflexive preduals of the space of holomorphic functions. Stud. Math. 107 (1993), 305–315. | DOI | MR
[8] H. A. Braunss, H. Junek: Factorization of injective ideals by interpolation. J. Math. Anal. Appl. 297 (2004), 740–750. | DOI | MR
[9] P. G. Casazza: Approximation properties. In: Handbook of the Geometry of Banach Spaces, Vol. I, W. Johnson, J. Lindenstrauss (eds.), North-Holland, Amsterdam, 2001, pp. 271–316. | MR | Zbl
[10] E. Çalışkan: Aproximação de funções holomorfas em espaços de dimensão infinita. PhD. Thesis, Universidade Estadual de Campinas, São Paulo, 2003.
[11] E. Çalışkan: Bounded holomorphic mappings and the compact approximation property. Port. Math. 61 (2004), 25–33. | MR
[12] E. Çalışkan: Approximation of holomorphic mappings on infinite dimensional spaces. Rev. Mat. Complut. 17 (2004), 411–434. | MR
[13] A. M. Davie: The approximation problem for Banach spaces. Bull. London Math. Soc. 5 (1973), 261–266. | DOI | MR | Zbl
[14] W. Davis, T. Figiel, W. Johnson, and A. Pełczyński: Factoring weakly compact operators. J. Funct. Anal. 17 (1974), 311–327. | DOI | MR
[15] S. Dineen: Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Math. Springer-Verlag, Berlin, 1999. | MR
[16] T. Figiel: Factorization of compact opertors and applications to the approximation problem. Stud. Math. 45 (1973), 191–210. | DOI | MR
[17] N. Grønbæk, G. A. Willis: Approximate identities in Banach algebras of compact operators. Can. Math. Bull. 36 (1993), 45–53. | DOI | MR
[18] S. Heinrich: Closed operator ideals and interpolation. J. Funct. Anal. 35 (1980), 397–411. | DOI | MR | Zbl
[19] Å. Lima, O. Nygaard, and E. Oja: Isometric factorization of weakly compact operators and the approximation property. Isr. J. Math. 119 (2000), 325–348. | DOI | MR
[20] J. Lindenstrauss: Weakly compact sets—their topological properties and the Banach spaces they generate. In: Symposium on Infinite Dimensional Topology. Ann. Math. Stud., R. D. Anderson (eds.), Princeton Univ. Press, Princeton, 1972, pp. 235–273. | MR | Zbl
[21] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces I. Sequence Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR
[22] J. Mujica: Complex Analysis in Banach Spaces. North-Holland Math. Stud. North-Holland, Amsterdam, 1986. | MR
[23] J. Mujica: Linearization of bounded holomorphic mappings on Banach spaces. Trans. Am. Math. Soc. 324 (1991), 867–887. | DOI | MR | Zbl
[24] J. Mujica: Reflexive spaces of homogeneous polynomials. Bull. Pol. Acad. Sci. Math. 49 (2001), 211–223. | MR | Zbl
[25] J. Mujica, M. Valdivia: Holomorphic germs on Tsirelson’s space. Proc. Am. Math. Soc. 123 (1995), 1379–1384. | MR
[26] A. Pietsch: Operator Ideals. North Holland, Amsterdam, 1980. | MR | Zbl
[27] A. Pietsch: Ideals of multilinear functionals. In: Proceedings of the Second International Conference on Operator Algebras, Ideals and Applications in Theoretical Physics, Teubner, Leipzig, 1983, pp. 185–199. | MR | Zbl
[28] R. Ryan: Applications of topological tensor products to infinite dimensional holomorphy. PhD. Thesis, Trinity College, Dublin, 1980.
[29] G. Willis: The compact approximation property does not imply the approximation property. Stud. Math. 103 (1992), 99–108. | DOI | MR | Zbl