Matrix refinement equations: Continuity and smoothness
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 747-762 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we give some criteria for the existence of compactly supported $C^{k+\alpha }$-solutions ($k$ is an integer and $0\le \alpha 1$) of matrix refinement equations. Several examples are presented to illustrate the general theory.
In this paper we give some criteria for the existence of compactly supported $C^{k+\alpha }$-solutions ($k$ is an integer and $0\le \alpha 1$) of matrix refinement equations. Several examples are presented to illustrate the general theory.
Classification : 39B12, 39B42, 42C40
Keywords: matrix refinement equation; continuity; smoothness; iteration; multi-wavelet
@article{CMJ_2007_57_2_a16,
     author = {He, Xing-Gang and Liu, Chun-Tai},
     title = {Matrix refinement equations: {Continuity} and smoothness},
     journal = {Czechoslovak Mathematical Journal},
     pages = {747--762},
     year = {2007},
     volume = {57},
     number = {2},
     mrnumber = {2337628},
     zbl = {1174.42043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a16/}
}
TY  - JOUR
AU  - He, Xing-Gang
AU  - Liu, Chun-Tai
TI  - Matrix refinement equations: Continuity and smoothness
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 747
EP  - 762
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a16/
LA  - en
ID  - CMJ_2007_57_2_a16
ER  - 
%0 Journal Article
%A He, Xing-Gang
%A Liu, Chun-Tai
%T Matrix refinement equations: Continuity and smoothness
%J Czechoslovak Mathematical Journal
%D 2007
%P 747-762
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a16/
%G en
%F CMJ_2007_57_2_a16
He, Xing-Gang; Liu, Chun-Tai. Matrix refinement equations: Continuity and smoothness. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 747-762. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a16/

[1] A. S. Cavaretta, W. Dahmen and C. A. Micchelli: Stationary subdivision. Memoirs of Amer. Math. Soc., Vol. 93, 1991. | MR

[2] A. Cohen, I. Daubechies and G. Plonka: Regularity of refinable function vectors. J. Fourier Anal. Appl. 3 (1997), 295–324. | DOI | MR

[3] A. Cohen, K. Gröchenig and L. F. Villemoes: Regularity of multivariate refinable functions. Constr. Approx. 15 (1999), 241–255. | DOI | MR

[4] D. Colella and C. Heil: Characterizations of scaling functions: Continuous solutions. SIAM J. Matrix Anal. Appl. 15 (1994), 496–518. | DOI | MR

[5] C. Heil and D. Colella: Matrix refinement equations: Existence and uniqueness. J. Fourier Anal. Appl. 2 (1996), 363–377. | MR

[6] I. Daubechies and J. Lagarias: Two-scale difference equation I. Existence and global regularity of solutions SIAM J. Math. Anal. 22 (1991), 1388–1410. | DOI | MR

[7] I. Daubechies and J. Lagarias: Two-scale difference equation II. Local regularity, infinite products of matrices, and fractals. SIAM J. Math. Anal. 22 (1991), 1388–1410. | MR

[8] T. A. Hogan: A note on matrix refinement equation. SIAM J. Math. Anal. 29 4 (1998), 849–854. | DOI | MR

[9] R. Q. Jia, K. S. Lau and J. R. Wang: $L_p$ solutions of refinement equations. J. Fourier Anal. and Appli. 7 (2001), 143–167. | DOI | MR

[10] K. S. Lau and J. R. Wang: Characterization of $L^p$-solutions for the two-scale dilation equations. SIAM J. Math. Anal. 26 (1995), 1018–1046. | DOI | MR

[11] P. Massopust, D. Ruch and P. Van Fleet: On the support properties of scaling vectors. Appl. Comp. Harmonic Anal. 3 (1996), 229–238. | DOI | MR

[12] C. A. Micchelli and H. Prautzsch: Uniform refinement of curves Linear Algebra and Its Applications. 114/115 (1989), 841–870. | MR

[13] G. Plonka and V. Strela: From wavelets to multiwavelets. Mathematical methods for curves and surfaces, 2 (Lillehammer) (1997), 375–399. | MR

[14] Z. W. Shen: Refinable function vectors. SIAM J. Math. Anal. 29 (1998), 235–250. | DOI | MR | Zbl

[15] D. X. Zhou: Existence of multiple refinable distributions. Michigan Math. J. 44 (1997), 317–329. | DOI | MR | Zbl