Keywords: sectionally pseudocomplemented semilattice; weakly standard element
@article{CMJ_2007_57_2_a14,
author = {Hala\v{s}, R. and K\"uhr, J.},
title = {Subdirectly irreducible sectionally pseudocomplemented semilattices},
journal = {Czechoslovak Mathematical Journal},
pages = {725--735},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337626},
zbl = {1174.06302},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a14/}
}
Halaš, R.; Kühr, J. Subdirectly irreducible sectionally pseudocomplemented semilattices. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 725-735. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a14/
[1] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra. Springer Verlag, New York, 1981. | MR
[2] I. Chajda: An extension of relative pseudocomplementation to non-distributive lattices. Acta Sci. Math. (Szeged) 69 (2003), 491–496. | MR | Zbl
[3] I. Chajda, G. Eigenthaler and H. Länger: Congruence Classes in Universal Algebra. Heldermann Verlag, Lemgo, 2003. | MR
[4] I. Chajda and R. Halaš: Sectionally pseudocomplemented lattices and semilattices. In: K. P. Shum (ed.) et al., Advances in Algebra. Proceedings of the ICM sattelite conference in algebra and related topics, Hong Kong, China, August 14–17, 2002. World Scientific, River Edge. 2003, pp. 282–290. | MR
[5] I. Chajda and S. Radeleczki: On varieties defined by pseudocomplemented nondistributive lattices. Publ. Math. Debrecen 63 (2003), 737–750. | MR
[6] G. Grätzer: General Lattice Theory (2nd edition). Birkhäuser Verlag, Basel-Boston-Berlin, 1998. | MR
[7] P. Köler: Brouwerian semilattices. Trans. Amer. Math. Soc. 268 (1981), 103–126. | DOI | MR
[8] W. C. Nemitz: Implicative semi-lattices. Trans. Amer. Math. Soc. 117 (1965), 128–142. | DOI | MR | Zbl
[9] J. C. Varlet: A generalization of the notion of pseudo-complementedeness. Bull. Soc. Roy. Liège 37 (1968), 149–158. | MR