Subdirectly irreducible sectionally pseudocomplemented semilattices
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 725-735 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sectionally pseudocomplemented semilattices are an extension of relatively pseudocomplemented semilattices—they are meet-semilattices with a greatest element such that every section, i.e., every principal filter, is a pseudocomplemented semilattice. In the paper, we give a simple equational characterization of sectionally pseudocomplemented semilattices and then investigate mainly their congruence kernels which leads to a characterization of subdirectly irreducible sectionally pseudocomplemented semilattices.
Sectionally pseudocomplemented semilattices are an extension of relatively pseudocomplemented semilattices—they are meet-semilattices with a greatest element such that every section, i.e., every principal filter, is a pseudocomplemented semilattice. In the paper, we give a simple equational characterization of sectionally pseudocomplemented semilattices and then investigate mainly their congruence kernels which leads to a characterization of subdirectly irreducible sectionally pseudocomplemented semilattices.
Classification : 06A12, 06D15
Keywords: sectionally pseudocomplemented semilattice; weakly standard element
@article{CMJ_2007_57_2_a14,
     author = {Hala\v{s}, R. and K\"uhr, J.},
     title = {Subdirectly irreducible sectionally pseudocomplemented semilattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {725--735},
     year = {2007},
     volume = {57},
     number = {2},
     mrnumber = {2337626},
     zbl = {1174.06302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a14/}
}
TY  - JOUR
AU  - Halaš, R.
AU  - Kühr, J.
TI  - Subdirectly irreducible sectionally pseudocomplemented semilattices
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 725
EP  - 735
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a14/
LA  - en
ID  - CMJ_2007_57_2_a14
ER  - 
%0 Journal Article
%A Halaš, R.
%A Kühr, J.
%T Subdirectly irreducible sectionally pseudocomplemented semilattices
%J Czechoslovak Mathematical Journal
%D 2007
%P 725-735
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a14/
%G en
%F CMJ_2007_57_2_a14
Halaš, R.; Kühr, J. Subdirectly irreducible sectionally pseudocomplemented semilattices. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 725-735. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a14/

[1] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra. Springer Verlag, New York, 1981. | MR

[2] I. Chajda: An extension of relative pseudocomplementation to non-distributive lattices. Acta Sci. Math. (Szeged) 69 (2003), 491–496. | MR | Zbl

[3] I. Chajda, G. Eigenthaler and H. Länger: Congruence Classes in Universal Algebra. Heldermann Verlag, Lemgo, 2003. | MR

[4] I. Chajda and R. Halaš: Sectionally pseudocomplemented lattices and semilattices. In: K. P. Shum (ed.) et al., Advances in Algebra. Proceedings of the ICM sattelite conference in algebra and related topics, Hong Kong, China, August 14–17, 2002. World Scientific, River Edge. 2003, pp. 282–290. | MR

[5] I. Chajda and S. Radeleczki: On varieties defined by pseudocomplemented nondistributive lattices. Publ. Math. Debrecen 63 (2003), 737–750. | MR

[6] G. Grätzer: General Lattice Theory (2nd edition). Birkhäuser Verlag, Basel-Boston-Berlin, 1998. | MR

[7] P. Köler: Brouwerian semilattices. Trans. Amer. Math. Soc. 268 (1981), 103–126. | DOI | MR

[8] W. C. Nemitz: Implicative semi-lattices. Trans. Amer. Math. Soc. 117 (1965), 128–142. | DOI | MR | Zbl

[9] J. C. Varlet: A generalization of the notion of pseudo-complementedeness. Bull. Soc. Roy. Liège 37 (1968), 149–158. | MR