Keywords: $C_1$-class; generalized $p$-symmetric operator; Anderson Inequality
@article{CMJ_2007_57_2_a12,
author = {Mecheri, S.},
title = {A new characterization of {Anderson{\textquoteright}s} inequality in $C_1$-classes},
journal = {Czechoslovak Mathematical Journal},
pages = {697--703},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337624},
zbl = {1174.47025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a12/}
}
Mecheri, S. A new characterization of Anderson’s inequality in $C_1$-classes. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 697-703. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a12/
[1] J. H. Anderson: On normal derivation. Proc. Amer. Math. Soc. 38 (1973), 135–140. | DOI | MR
[2] J. H. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams: C$^{*}$ algebras and derivation ranges. Acta Sci. Math. 40 (1978), 211–227. | MR
[3] S. Bouali, J. Charles: Extension de la notion d’opérateur D-symétique I. Acta Sci. Math. 58 (1993), 517–525. (French) | MR
[4] S. Mecheri: Generalized P-symmetric operators. Proc. Roy. Irish Acad. 104A (2004), 173–175. | MR
[5] S. Mecheri, M. Bounkhel: Some variants of Anderson’s inequality in $C_{1}$-classes. JIPAM, J. Inequal. Pure Appl. Math. 4 (2003), 1–6. | MR
[6] S. Mecheri: On the range of elementary operators. Integral Equations Oper. Theory 53 (2005), 403–409. | DOI | MR | Zbl
[7] V. S. Shulman: On linear equation with normal coefficient. Dokl. Akad. Nauk USSR 2705 (1983), 1070–1073. (Russian) | MR
[8] J. P. Williams: On the range of a derivation. Pac. J. Math. 38 (1971), 273–279. | MR | Zbl