The ap-Denjoy and ap-Henstock integrals
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 689-696 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we define the ap-Denjoy integral and show that the ap-Denjoy integral is equivalent to the ap-Henstock integral and the integrals are equal.
In this paper we define the ap-Denjoy integral and show that the ap-Denjoy integral is equivalent to the ap-Henstock integral and the integrals are equal.
Classification : 26A39, 28B05
Keywords: approximate Lusin function; ap-Denjoy integral; ap-Henstock integral; choice
@article{CMJ_2007_57_2_a11,
     author = {Park, Jae Myung and Oh, Jae Jung and Park, Chun-Gil and Lee, Deuk Ho},
     title = {The {ap-Denjoy} and {ap-Henstock} integrals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {689--696},
     year = {2007},
     volume = {57},
     number = {2},
     mrnumber = {2337623},
     zbl = {1174.26308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a11/}
}
TY  - JOUR
AU  - Park, Jae Myung
AU  - Oh, Jae Jung
AU  - Park, Chun-Gil
AU  - Lee, Deuk Ho
TI  - The ap-Denjoy and ap-Henstock integrals
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 689
EP  - 696
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a11/
LA  - en
ID  - CMJ_2007_57_2_a11
ER  - 
%0 Journal Article
%A Park, Jae Myung
%A Oh, Jae Jung
%A Park, Chun-Gil
%A Lee, Deuk Ho
%T The ap-Denjoy and ap-Henstock integrals
%J Czechoslovak Mathematical Journal
%D 2007
%P 689-696
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a11/
%G en
%F CMJ_2007_57_2_a11
Park, Jae Myung; Oh, Jae Jung; Park, Chun-Gil; Lee, Deuk Ho. The ap-Denjoy and ap-Henstock integrals. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 689-696. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a11/

[1] P. S.  Bullen: The Burkill approximately continuous integral. J.  Austral. Math. Soc. (Ser.  A) 35 (1983), 236–253. | DOI | MR | Zbl

[2] T. S.  Chew, K.  Liao: The descriptive definitions and properties of the AP-integral and their application to the problem of controlled convergence. Real Anal. Exch. 19 (1994), 81–97. | MR

[3] R. A.  Gordon: Some comments on the McShane and Henstock integrals. Real Anal. Exch. 23 (1997), 329–341. | DOI | MR | Zbl

[4] R. A.  Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock. Amer. Math. Soc., Providence, 1994. | MR | Zbl

[5] J.  Kurzweil: On multiplication of Perron integrable functions. Czechoslovak Math.  J. 23(98) (1973), 542–566. | MR | Zbl

[6] J.  Kurzweil, J.  Jarník: Perron type integration on n-dimensional intervals as an extension of integration of step functions by strong equiconvergence. Czechoslovak Math.  J. 46(121) (1996), 1–20. | MR

[7] T. Y.  Lee: On a generalized dominated convergence theorem for the AP  integral. Real Anal. Exch. 20 (1995), 77–88. | MR | Zbl

[8] K.  Liao: On the descriptive definition of the Burkill approximately continuous integral. Real Anal. Exch. 18 (1993), 253–260. | DOI | MR | Zbl

[9] Y. J.  Lin: On the equivalence of four convergence theorems for the AP-integral. Real Anal. Exch. 19 (1994), 155–164. | MR | Zbl

[10] J. M.  Park: Bounded convergence theorem and integral operator for operator valued measures. Czechoslovak Math.  J. 47(122) (1997), 425–430. | DOI | MR | Zbl

[11] J. M.  Park: The Denjoy extension of the Riemann and McShane integrals. Czechoslovak Math.  J. 50(125) (2000), 615–625. | DOI | MR | Zbl

[12] J. M.  Park, C. G.  Park, J. B.  Kim, D. H.  Lee, and W. Y.  Lee: The $s$-Perron, sap-Perron and ap-McShane integrals. Czechoslovak Math.  J. 54(129) (2004), 545–557. | DOI | MR

[13] A. M.  Russell: Stieltjes type integrals. J.  Austr. Math. Soc. (Ser.  A) 20 (1975), 431–448. | DOI | MR | Zbl

[14] A. M.  Russell: A Banach space of functions of generalized variation. Bull. Aust. Math. Soc. 15 (1976), 431–438. | DOI | MR | Zbl