Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 679-688 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

If $(\Omega ,\Sigma ) $ is a measurable space and $X$ a Banach space, we provide sufficient conditions on $\Sigma $ and $X$ in order to guarantee that $\mathop {\mathrm bvca}( \Sigma ,X) $, the Banach space of all $X$-valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of $c_{0}$ if and only if $X$ does.
If $(\Omega ,\Sigma ) $ is a measurable space and $X$ a Banach space, we provide sufficient conditions on $\Sigma $ and $X$ in order to guarantee that $\mathop {\mathrm bvca}( \Sigma ,X) $, the Banach space of all $X$-valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of $c_{0}$ if and only if $X$ does.
Classification : 28A33, 28B05, 46B25, 46E27, 46G10
Keywords: countably additive vector measure of bounded variation; Pettis integrable function space; copy of $c_{0}$; copy of $\ell _{\infty }$
@article{CMJ_2007_57_2_a10,
     author = {Ferrando, J. C. and Ruiz, L. M. S\'anchez},
     title = {Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {679--688},
     year = {2007},
     volume = {57},
     number = {2},
     mrnumber = {2337622},
     zbl = {1174.46016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a10/}
}
TY  - JOUR
AU  - Ferrando, J. C.
AU  - Ruiz, L. M. Sánchez
TI  - Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 679
EP  - 688
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a10/
LA  - en
ID  - CMJ_2007_57_2_a10
ER  - 
%0 Journal Article
%A Ferrando, J. C.
%A Ruiz, L. M. Sánchez
%T Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$
%J Czechoslovak Mathematical Journal
%D 2007
%P 679-688
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a10/
%G en
%F CMJ_2007_57_2_a10
Ferrando, J. C.; Ruiz, L. M. Sánchez. Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 679-688. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a10/

[1] J. Bourgain: An averaging result for $c_{0}$-sequences. Bull. Soc. Math. Belg., Sér. B 30 (1978), 83–87. | MR | Zbl

[2] P. Cembranos, J.  Mendoza: Banach Spaces of Vector-Valued Functions. Lecture Notes in Mathematics Vol.  1676. Springer-Verlag, Berlin, 1997. | MR

[3] J.  Diestel: Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer-Verlag, New York-Heidelberg-Berlin, 1984. | MR

[4] J.  Diestel, J.  Uhl: Vector Measures. Mathematical Surveys, No  15. Am. Math. Soc., Providence, 1977. | MR

[5] L.  Drewnowski: When does $\mathop {\mathrm ca}( \Sigma ,Y) $ contain a copy of  $\ell _{\infty }$ or $c_{0}$. Proc. Am. Math. Soc. 109 (1990), 747–752. | DOI | MR

[6] J. C.  Ferrando: When does $( \Sigma ,X)$ contain a copy of  $\ell _{\infty }$. Math. Scand. 74 (1994), 271–274. | DOI | MR

[7] P. Habala, P.  Hájek, and V. Zizler: Introduction to Banach Space. Matfyzpress, Prague, 1996.

[8] E. Hewitt, K.  Stromberg: Real and Abstract Analysis. Graduate Texts in Mathematics  25. Springer-Verlag, New York-Heidelberg-Berlin, 1975. | MR

[9] K.  Musial: The weak Radon-Nikodým property in Banach spaces. Stud. Math. 64 (1979), 151–173. | DOI | MR | Zbl

[10] E. Saab, P.  Saab: On complemented copies of  $c_{0} $ in injective tensor products. Contemp. Math. 52 (1986), 131–135. | DOI

[11] M.  Talagrand: Quand l’espace des mesures a variation bornée est-it faiblement sequentiellement complet. Proc. Am. Math. Soc. 90 (1984), 285–288. (French) | MR