Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 679-688
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
If $(\Omega ,\Sigma ) $ is a measurable space and $X$ a Banach space, we provide sufficient conditions on $\Sigma $ and $X$ in order to guarantee that $\mathop {\mathrm bvca}( \Sigma ,X) $, the Banach space of all $X$-valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of $c_{0}$ if and only if $X$ does.
If $(\Omega ,\Sigma ) $ is a measurable space and $X$ a Banach space, we provide sufficient conditions on $\Sigma $ and $X$ in order to guarantee that $\mathop {\mathrm bvca}( \Sigma ,X) $, the Banach space of all $X$-valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of $c_{0}$ if and only if $X$ does.
Classification :
28A33, 28B05, 46B25, 46E27, 46G10
Keywords: countably additive vector measure of bounded variation; Pettis integrable function space; copy of $c_{0}$; copy of $\ell _{\infty }$
Keywords: countably additive vector measure of bounded variation; Pettis integrable function space; copy of $c_{0}$; copy of $\ell _{\infty }$
@article{CMJ_2007_57_2_a10,
author = {Ferrando, J. C. and Ruiz, L. M. S\'anchez},
title = {Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$},
journal = {Czechoslovak Mathematical Journal},
pages = {679--688},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337622},
zbl = {1174.46016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a10/}
}
Ferrando, J. C.; Ruiz, L. M. Sánchez. Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 679-688. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a10/