Keywords: countably additive vector measure of bounded variation; Pettis integrable function space; copy of $c_{0}$; copy of $\ell _{\infty }$
@article{CMJ_2007_57_2_a10,
author = {Ferrando, J. C. and Ruiz, L. M. S\'anchez},
title = {Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$},
journal = {Czechoslovak Mathematical Journal},
pages = {679--688},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337622},
zbl = {1174.46016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a10/}
}
Ferrando, J. C.; Ruiz, L. M. Sánchez. Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 679-688. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a10/
[1] J. Bourgain: An averaging result for $c_{0}$-sequences. Bull. Soc. Math. Belg., Sér. B 30 (1978), 83–87. | MR | Zbl
[2] P. Cembranos, J. Mendoza: Banach Spaces of Vector-Valued Functions. Lecture Notes in Mathematics Vol. 1676. Springer-Verlag, Berlin, 1997. | MR
[3] J. Diestel: Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer-Verlag, New York-Heidelberg-Berlin, 1984. | MR
[4] J. Diestel, J. Uhl: Vector Measures. Mathematical Surveys, No 15. Am. Math. Soc., Providence, 1977. | MR
[5] L. Drewnowski: When does $\mathop {\mathrm ca}( \Sigma ,Y) $ contain a copy of $\ell _{\infty }$ or $c_{0}$. Proc. Am. Math. Soc. 109 (1990), 747–752. | DOI | MR
[6] J. C. Ferrando: When does $( \Sigma ,X)$ contain a copy of $\ell _{\infty }$. Math. Scand. 74 (1994), 271–274. | DOI | MR
[7] P. Habala, P. Hájek, and V. Zizler: Introduction to Banach Space. Matfyzpress, Prague, 1996.
[8] E. Hewitt, K. Stromberg: Real and Abstract Analysis. Graduate Texts in Mathematics 25. Springer-Verlag, New York-Heidelberg-Berlin, 1975. | MR
[9] K. Musial: The weak Radon-Nikodým property in Banach spaces. Stud. Math. 64 (1979), 151–173. | DOI | MR | Zbl
[10] E. Saab, P. Saab: On complemented copies of $c_{0} $ in injective tensor products. Contemp. Math. 52 (1986), 131–135. | DOI
[11] M. Talagrand: Quand l’espace des mesures a variation bornée est-it faiblement sequentiellement complet. Proc. Am. Math. Soc. 90 (1984), 285–288. (French) | MR