@article{CMJ_2007_57_2_a1,
author = {Billington, Elizabeth J. and Cavenagh, Nicholas J.},
title = {Decomposing complete tripartite graphs into closed trails of arbitrary lengths},
journal = {Czechoslovak Mathematical Journal},
pages = {523--551},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337613},
zbl = {1174.05100},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a1/}
}
TY - JOUR AU - Billington, Elizabeth J. AU - Cavenagh, Nicholas J. TI - Decomposing complete tripartite graphs into closed trails of arbitrary lengths JO - Czechoslovak Mathematical Journal PY - 2007 SP - 523 EP - 551 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a1/ LA - en ID - CMJ_2007_57_2_a1 ER -
Billington, Elizabeth J.; Cavenagh, Nicholas J. Decomposing complete tripartite graphs into closed trails of arbitrary lengths. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 523-551. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a1/
[1] P. Balister: Packing circuits into $K_N$. Combinatorics, Probability and Computing 10 (2001), 463–499. | DOI | MR | Zbl
[2] P. Balister: Packing closed trails into dense graphs. J. Combinatorial Theory, Ser. B 88 (2003), 107–118. | DOI | MR | Zbl
[3] E. J. Billington: Decomposing complete tripartite graphs into cycles of length $3$ and $4$. Discrete Math. 197/198 (1999), 123–135. | MR
[4] E. J. Billington: Combinatorial trades: a survey of recent results. Chapter 3 in Designs 2002: Further Computational and Constructive Design Theory (ed. W. D. Wallis), Kluwer Academic Publishers, Boston/Dordrecht/London, 2003, pp. 47–67. | MR | Zbl
[5] N. J. Cavenagh: Decompositions of complete tripartite graphs into $k$-cycles. Australas. J. Combin. 18 (1998), 193–200. | MR | Zbl
[6] N. J. Cavenagh: Further decompositions of complete tripartite graphs into $5$-cycles. Discrete Math. 256 (2002), 55–81. | MR | Zbl
[7] N. J. Cavenagh and E. J. Billington: On decomposing complete tripartite graphs into $5$-cycles. Australas. J. Combin. 22 (2000), 41–62. | MR
[8] N. J. Cavenagh and E. J. Billington: Decompositions of complete multipartite graphs into cycles of even length. Graphs and Combinatorics 16 (2000), 49–65. | DOI | MR
[9] M. Horňák and M. Woźniak: Decomposition of complete bipartite even graphs into closed trails. Czech. Math. J. 53 (2003), 127–134. | DOI | MR
[10] Z. Kocková: Decomposition of even graphs into closed trails. Abstract at Grafy ’03, Javorná, Czech Republic.
[11] J. Liu: The equipartite Oberwolfach problem with uniform tables. J. Combin. Theory, Ser. A 101 (2003), 20–34. | MR | Zbl
[12] E. S. Mahmoodian and M. Mirzakhani: Decomposition of complete tripartite graphs into $5$-cycles. In: Combinatorics Advances, Kluwer Academic Publishers, Netherlands, 1995, pp. 235–241. | MR
[13] D. Sotteau: Decomposition of $K_{m,n}(K^*_{m,n})$ into cycles (circuits) of length $2k$. J. Combinatorial Theory (Series B) 30 (1981), 75–81. | DOI | MR | Zbl