Decomposing complete tripartite graphs into closed trails of arbitrary lengths
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 523-551
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The complete tripartite graph $K_{n,n,n}$ has $3n^2$ edges. For any collection of positive integers $x_1,x_2,\dots ,x_m$ with $\sum _{i=1}^m x_i=3n^2$ and $x_i\ge 3$ for $1\le i\le m$, we exhibit an edge-disjoint decomposition of $K_{n,n,n}$ into closed trails (circuits) of lengths $x_1,x_2,\dots ,x_m$.
The complete tripartite graph $K_{n,n,n}$ has $3n^2$ edges. For any collection of positive integers $x_1,x_2,\dots ,x_m$ with $\sum _{i=1}^m x_i=3n^2$ and $x_i\ge 3$ for $1\le i\le m$, we exhibit an edge-disjoint decomposition of $K_{n,n,n}$ into closed trails (circuits) of lengths $x_1,x_2,\dots ,x_m$.
@article{CMJ_2007_57_2_a1,
author = {Billington, Elizabeth J. and Cavenagh, Nicholas J.},
title = {Decomposing complete tripartite graphs into closed trails of arbitrary lengths},
journal = {Czechoslovak Mathematical Journal},
pages = {523--551},
year = {2007},
volume = {57},
number = {2},
mrnumber = {2337613},
zbl = {1174.05100},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a1/}
}
TY - JOUR AU - Billington, Elizabeth J. AU - Cavenagh, Nicholas J. TI - Decomposing complete tripartite graphs into closed trails of arbitrary lengths JO - Czechoslovak Mathematical Journal PY - 2007 SP - 523 EP - 551 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a1/ LA - en ID - CMJ_2007_57_2_a1 ER -
Billington, Elizabeth J.; Cavenagh, Nicholas J. Decomposing complete tripartite graphs into closed trails of arbitrary lengths. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 523-551. http://geodesic.mathdoc.fr/item/CMJ_2007_57_2_a1/