Keywords: GCD-closed set; LCM-closed set; greatest-type divisor; divisibility
@article{CMJ_2007_57_1_a9,
author = {Zhao, Jianrong and Hong, Shaofang and Liao, Qunying and Shum, K. P.},
title = {On the divisibility of power {LCM} matrices by power {GCD} matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {115--125},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309953},
zbl = {1174.11031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a9/}
}
TY - JOUR AU - Zhao, Jianrong AU - Hong, Shaofang AU - Liao, Qunying AU - Shum, K. P. TI - On the divisibility of power LCM matrices by power GCD matrices JO - Czechoslovak Mathematical Journal PY - 2007 SP - 115 EP - 125 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a9/ LA - en ID - CMJ_2007_57_1_a9 ER -
Zhao, Jianrong; Hong, Shaofang; Liao, Qunying; Shum, K. P. On the divisibility of power LCM matrices by power GCD matrices. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a9/
[1] T. M. Apostol: Arithmetical properties of generalized Ramanujan sums. Pacific J. Math. 41 (1972), 281–293. | DOI | MR | Zbl
[2] S. Beslin and S. Ligh: Another generalization of Smith’s determinant. Bull. Austral. Math. Soc. 40 (1989), 413–415. | DOI | MR
[3] K. Bourque and S. Ligh: On GCD and LCM matrices. Linear Algebra Appl. 174 (1992), 65–74. | DOI | MR
[4] K. Bourque and S. Ligh: Matrices associated with arithmetical functions. Linear and Multilinear Algebra 34 (1993), 261–267. | DOI | MR
[5] K. Bourque and S. Ligh: Matrices associated with classes of arithmetical functions. J. Number Theory 45 (1993), 367–376. | DOI | MR
[6] K. Bourque and S. Ligh: Matrices associated with classes of multiplicative functions. Linear Algebra Appl. 216 (1995), 267–275. | MR
[7] C. He and J. Zhao: More on divisibility of determinants of LCM Matrices on GCD-closed sets. Southeast Asian Bull. Math. 29 (2005), 887–893. | MR
[8] S. Hong: On the Bourque-Ligh conjecture of least common multiple matrices. J. Algebra 218 (1999), 216–228. | DOI | MR | Zbl
[9] S. Hong: On the factorization of LCM matrices on gcd-closed sets. Linear Algebra Appl. 345 (2002), 225–233. | MR | Zbl
[10] S. Hong: Gcd-closed sets and determinants of matrices associated with arithmetical functions. Acta Arith. 101 (2002), 321–332. | DOI | MR | Zbl
[11] S. Hong: Factorization of matrices associated with classes of arithmetical functions. Colloq. Math. 98 (2003), 113–123. | DOI | MR | Zbl
[12] S. Hong: Notes on power LCM matrices. Acta Arith. 111 (2004), 165–177. | DOI | MR | Zbl
[13] S. Hong: Nonsingularity of matrices associated with classes of arithmetical functions. J. Algebra 281 (2004), 1–14. | DOI | MR | Zbl
[14] S. Hong: Nonsingularity of least common multiple matrices on gcd-closed sets. J. Number Theory 113 (2005), 1–9. | DOI | MR | Zbl
[15] S. Hong and R. Loewy: Asymptotic behavior of eigenvalues of greatest common divisor matrices. Glasgow Math. J. 46 (2004), 551–569. | DOI | MR
[16] S. Hong and Q. Sun: Determinants of matrices associated with incidence functions on posets. Czechoslovak Math. J. 54 (2004), 431–443. | DOI | MR
[17] P. Lindqvist and K. Seip: Note on some greatest common divisor matrices. Acta Arith. 84 (1998), 149–154. | DOI | MR
[18] P. J. McCarthy: A generalization of Smith’s determinant. Canad. Math. Bull. 29 (1986), 109–113. | DOI | MR | Zbl
[19] H. J. S. Smith: On the value of a certain arithmetical determinant. Proc. London Math. Soc. 7 (1875–1876), 208–212.
[20] A. Wintner: Diophantine approximations and Hilbert’s space. Amer. J. Math. 66 (1944), 564–578. | DOI | MR | Zbl