On the divisibility of power LCM matrices by power GCD matrices
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 115-125
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $S=\lbrace x_1,\dots ,x_n\rbrace $ be a set of $n$ distinct positive integers and $e\ge 1$ an integer. Denote the $n\times n$ power GCD (resp. power LCM) matrix on $S$ having the $e$-th power of the greatest common divisor $(x_i,x_j)$ (resp. the $e$-th power of the least common multiple $[x_i,x_j]$) as the $(i,j)$-entry of the matrix by $((x_i, x_j)^e)$ (resp. $([x_i, x_j]^e))$. We call the set $S$ an odd gcd closed (resp. odd lcm closed) set if every element in $S$ is an odd number and $(x_i,x_j)\in S$ (resp. $[x_i, x_j]\in S$) for all $1\le i,j \le n$. In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that for any integer $e\ge 1$, the $n\times n$ power GCD matrix $((x_i, x_j)^e)$ defined on an odd-gcd-closed (resp. odd-lcm-closed) set $S$ divides the $n\times n$ power LCM matrix $([x_i, x_j]^e)$ defined on $S$ in the ring $M_n({\mathbb Z})$ of $n\times n$ matrices over integers. In this paper, we use Hong’s method developed in his previous papers [J. Algebra 218 (1999) 216–228; 281 (2004) 1–14, Acta Arith. 111 (2004), 165–177 and J. Number Theory 113 (2005), 1–9] to investigate Hong’s conjectures. We show that the conjectures of Hong are true for $n\le 3$ but they are both not true for $n\ge 4$.
Let $S=\lbrace x_1,\dots ,x_n\rbrace $ be a set of $n$ distinct positive integers and $e\ge 1$ an integer. Denote the $n\times n$ power GCD (resp. power LCM) matrix on $S$ having the $e$-th power of the greatest common divisor $(x_i,x_j)$ (resp. the $e$-th power of the least common multiple $[x_i,x_j]$) as the $(i,j)$-entry of the matrix by $((x_i, x_j)^e)$ (resp. $([x_i, x_j]^e))$. We call the set $S$ an odd gcd closed (resp. odd lcm closed) set if every element in $S$ is an odd number and $(x_i,x_j)\in S$ (resp. $[x_i, x_j]\in S$) for all $1\le i,j \le n$. In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that for any integer $e\ge 1$, the $n\times n$ power GCD matrix $((x_i, x_j)^e)$ defined on an odd-gcd-closed (resp. odd-lcm-closed) set $S$ divides the $n\times n$ power LCM matrix $([x_i, x_j]^e)$ defined on $S$ in the ring $M_n({\mathbb Z})$ of $n\times n$ matrices over integers. In this paper, we use Hong’s method developed in his previous papers [J. Algebra 218 (1999) 216–228; 281 (2004) 1–14, Acta Arith. 111 (2004), 165–177 and J. Number Theory 113 (2005), 1–9] to investigate Hong’s conjectures. We show that the conjectures of Hong are true for $n\le 3$ but they are both not true for $n\ge 4$.
Classification : 11A25, 11C20, 15A36
Keywords: GCD-closed set; LCM-closed set; greatest-type divisor; divisibility
@article{CMJ_2007_57_1_a9,
     author = {Zhao, Jianrong and Hong, Shaofang and Liao, Qunying and Shum, K. P.},
     title = {On the divisibility of power {LCM} matrices by power {GCD} matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {115--125},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309953},
     zbl = {1174.11031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a9/}
}
TY  - JOUR
AU  - Zhao, Jianrong
AU  - Hong, Shaofang
AU  - Liao, Qunying
AU  - Shum, K. P.
TI  - On the divisibility of power LCM matrices by power GCD matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 115
EP  - 125
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a9/
LA  - en
ID  - CMJ_2007_57_1_a9
ER  - 
%0 Journal Article
%A Zhao, Jianrong
%A Hong, Shaofang
%A Liao, Qunying
%A Shum, K. P.
%T On the divisibility of power LCM matrices by power GCD matrices
%J Czechoslovak Mathematical Journal
%D 2007
%P 115-125
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a9/
%G en
%F CMJ_2007_57_1_a9
Zhao, Jianrong; Hong, Shaofang; Liao, Qunying; Shum, K. P. On the divisibility of power LCM matrices by power GCD matrices. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a9/

[1] T. M. Apostol: Arithmetical properties of generalized Ramanujan sums. Pacific J. Math. 41 (1972), 281–293. | DOI | MR | Zbl

[2] S. Beslin and S. Ligh: Another generalization of Smith’s determinant. Bull. Austral. Math. Soc. 40 (1989), 413–415. | DOI | MR

[3] K. Bourque and S. Ligh: On GCD and LCM matrices. Linear Algebra Appl. 174 (1992), 65–74. | DOI | MR

[4] K. Bourque and S. Ligh: Matrices associated with arithmetical functions. Linear and Multilinear Algebra 34 (1993), 261–267. | DOI | MR

[5] K. Bourque and S. Ligh: Matrices associated with classes of arithmetical functions. J.  Number Theory 45 (1993), 367–376. | DOI | MR

[6] K. Bourque and S. Ligh: Matrices associated with classes of multiplicative functions. Linear Algebra Appl. 216 (1995), 267–275. | MR

[7] C. He and J. Zhao: More on divisibility of determinants of LCM Matrices on GCD-closed sets. Southeast Asian Bull. Math. 29 (2005), 887–893. | MR

[8] S. Hong: On the Bourque-Ligh conjecture of least common multiple matrices. J. Algebra 218 (1999), 216–228. | DOI | MR | Zbl

[9] S. Hong: On the factorization of LCM matrices on gcd-closed sets. Linear Algebra Appl. 345 (2002), 225–233. | MR | Zbl

[10] S. Hong: Gcd-closed sets and determinants of matrices associated with arithmetical functions. Acta Arith. 101 (2002), 321–332. | DOI | MR | Zbl

[11] S. Hong: Factorization of matrices associated with classes of arithmetical functions. Colloq. Math. 98 (2003), 113–123. | DOI | MR | Zbl

[12] S. Hong: Notes on power LCM matrices. Acta Arith. 111 (2004), 165–177. | DOI | MR | Zbl

[13] S. Hong: Nonsingularity of matrices associated with classes of arithmetical functions. J.  Algebra 281 (2004), 1–14. | DOI | MR | Zbl

[14] S. Hong: Nonsingularity of least common multiple matrices on gcd-closed sets. J. Number Theory 113 (2005), 1–9. | DOI | MR | Zbl

[15] S. Hong and R. Loewy: Asymptotic behavior of eigenvalues of greatest common divisor matrices. Glasgow Math. J. 46 (2004), 551–569. | DOI | MR

[16] S. Hong and Q. Sun: Determinants of matrices associated with incidence functions on posets. Czechoslovak Math. J. 54 (2004), 431–443. | DOI | MR

[17] P. Lindqvist and K. Seip: Note on some greatest common divisor matrices. Acta Arith. 84 (1998), 149–154. | DOI | MR

[18] P. J. McCarthy: A generalization of Smith’s determinant. Canad. Math. Bull. 29 (1986), 109–113. | DOI | MR | Zbl

[19] H. J. S. Smith: On the value of a certain arithmetical determinant. Proc. London Math. Soc. 7 (1875–1876), 208–212.

[20] A. Wintner: Diophantine approximations and Hilbert’s space. Amer. J. Math. 66 (1944), 564–578. | DOI | MR | Zbl