Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 105-114 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A class of degree four differential systems that have an invariant conic $ x^2+Cy^2=1$, $C\in {\mathbb{R}}$, is examined. We show the coexistence of small amplitude limit cycles, large amplitude limit cycles, and invariant algebraic curves under perturbations of the coefficients of the systems.
A class of degree four differential systems that have an invariant conic $ x^2+Cy^2=1$, $C\in {\mathbb{R}}$, is examined. We show the coexistence of small amplitude limit cycles, large amplitude limit cycles, and invariant algebraic curves under perturbations of the coefficients of the systems.
Classification : 34-04, 34C05, 58F14, 58F21, 92D25
Keywords: stability; limit cycle; center; bifurcation
@article{CMJ_2007_57_1_a8,
     author = {S\'aez, Eduardo and Stange, Eduardo and Sz\'ant\'o, Iv\'an},
     title = {Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four},
     journal = {Czechoslovak Mathematical Journal},
     pages = {105--114},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309952},
     zbl = {1168.92319},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a8/}
}
TY  - JOUR
AU  - Sáez, Eduardo
AU  - Stange, Eduardo
AU  - Szántó, Iván
TI  - Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 105
EP  - 114
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a8/
LA  - en
ID  - CMJ_2007_57_1_a8
ER  - 
%0 Journal Article
%A Sáez, Eduardo
%A Stange, Eduardo
%A Szántó, Iván
%T Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four
%J Czechoslovak Mathematical Journal
%D 2007
%P 105-114
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a8/
%G en
%F CMJ_2007_57_1_a8
Sáez, Eduardo; Stange, Eduardo; Szántó, Iván. Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a8/

[1] N. N. Bautin: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus. Mat. Sbornik 30(72) (1952), 181–196. | MR | Zbl

[2] I. Bendixson: Sur les courbes définies par des équations différentielles. Acta Math. 24 (1900), 1–88. (French)

[3] W. A. Coppel: Some quadratics systems with at most one limit cycle. Dynam. report. Expositions Dynam. Systems (N.S.) 2 (1989), 61–88. | MR

[4] D. Cozma, A. Suba: The solution of the problem of center for cubic differential systems with four invariant straight lines. An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Nuova, Mat. 44 (Suppl.) (1999), 517–530. | MR

[5] D. Cozma, A. Suba: Solution of the problem of center for a cubic differential systems with three invariant straight lines. Qual. Theory Dyn. Syst. 2 (2001), 129–143. | DOI | MR

[6] J. Chavarriga, E. Sáez, I. Szántó, and M. Grau: Coexistence of limit cycles and invariant algebraic curves on a Kukles systems. Nonlinear Anal., Theory Methods Appl. 59 (2004), 673–693. | DOI | MR

[7] C. Lansun, W. Mingshu: Relative position and number of limit cycles of a quadratic differential system. Acta Math. Sin. 22 (1979), 751–758. (Chinese) | MR

[8] L. A. Cherkas, L. I. Zhilevich: The limit cycles of some differential equations. Differ. Uravn. 8 (1972), 924–929. (Russian)

[9] C. Christopher: Quadratic systems having a parabola as an integral curve. Proc. R. Soc. Edinb. Sect.  A 112 (1989), 113–134. | DOI | MR | Zbl

[10] D. Guoren, W. Songlin: Closed orbits and straight line invariants in $E_3$  systems. Acta Mathematica Sci. 9 (1989), 251–261. (Chinese)

[11] H. Dulac: Sur les cycles limites. S. M. F. Bull. 51 (1923), 45–188. (French) | MR

[12] D.  Hilbert: Mathematical problems. American Bull (2) 8 (1902), 437–479. | DOI | MR

[13] E. D. James, N. G. Lloyd: A cubic system with eigth small-amplitude limit cycles. IMA  J.  Appl. Math. 47 (1991), 163–171. | DOI | MR

[14] R. Kooij: Limit cycles in polynomial systems. PhD. thesis, University of Technology, Delft, 1993.

[15] J.  Li: Hilbert’s 16th problem for $ n=3 \: H(3) \ge 11 $. Kexue Tongbao 31 (1984), 718.

[16] A. Liénard: Etude des oscillations entreteneues. Re. générale de l’électricité 23 (1928), 901–912. (French)

[17] Z. H. Liu, E.  Sáez, and I.  Szántó: A cubic systems with an invariant triangle surrounding at last one limit cycle. Taiwanese J.  Math. 7 (2003), 275–281. | DOI | MR

[18] N. G. Lloyd, J. M. Pearson, E. Sáez, and I.  Szántó: Limit cycles of a cubic Kolmogorov system. Appl. Math. Lett. 9 (1996), 15–18. | DOI | MR

[19] N. G. Lloyd, J. M. Pearson, E. Sáez, and I.  Szántó: A cubic Kolmogorov system with six limit cycles. Computers Math. Appl. 44 (2002), 445–455. | DOI | MR

[20] N. G. Lloyd, J. M. Pearson: Five limit cycles for a simple cubic system. Publications Mathematiques 41 (1997), 199–208. | MR

[21] N. G. Lloyd, T. R. Blows, and M. C. Kalenge: Some cubic systems with several limit cycles. Nonlinearity (1988), 653–669. | MR

[22] S. Ning, S. Ma, K. H. Kwek, and Z. Zheng: A cubic systems with eight small-amplitude limit cycles. Appl. Math. Lett. 7 (1994), 23–27. | DOI | MR

[23] H.  Poincaré: Mémorie sur les courbes définies par leś équations differentialles I–VI, Oeuvre I. Gauthier-Villar, Paris, 1880–1890. (French)

[24] L. S. Pontryagin: On dynamical systems close to Hamiltonian ones. Zh. Eksper. Teoret. Fiz. 4 (1934), 883–885. (Russian)

[25] J. W. Reyn: A bibliography of the qualitative theory of quadratic systems of differential equation in the plane. Report TU Delft 92-17, second edition, 1992.

[26] E. Sáez, I. Szántó, and E.  González-Olivares: Cubic Kolmogorov system with four limit cycles and three invariant straight lines. Nonlinear Anal., Theory Methods Appl. 47 (2001), 4521–4525. | DOI | MR

[27] S. Songling: A concrete example of the existence of four limit cycles for planar quadratics systems. Sci. Sin. XXIII (1980), 153–158. | MR

[28] S. Songling: System of equation  ($ E_{3}$) has five limit cycles. Acta Math. Sin. 18 (1975). (Chinese)

[29] S. Guangjian, S. Jifang: The $n$-degree differential system with $\frac{1}{2}{(n-1)(n+1)}$ straight line solutions has no limit cycles. Proc. Conf. Ordinary Differential Equations and Control Theory, Wuhan 1987 (1987), 216–220. (Chinese) | MR

[30] B.  van der Pol: On relaxation-oscillations. Philos. Magazine 7 (1926), 978–992. | DOI

[31] W. Dongming: A class of cubic differential systems with 6-tuple focus. J.  Differ. Equations 87 (1990), 305–315. | DOI | MR | Zbl

[32] Y. Xinan: A survey of cubic systems. Ann. Differ. Equations 7 (1991), 323–363. | MR | Zbl

[33] Y. Yanqian, Y. Weiyin: Cubic Kolmogorov differential system with two limit cycles surrounding the same focus. Ann. Differ. Equations 1 (1985), 201–207. | MR

[34] P. Yu and M. Han: Twelve limit cycles in a cubic order planar system with $Z_2$-symmetry. Communications on pure and applied analysis 3 (2004), 515–526. | MR

[35] H. Zoladek: Eleven small limit cycles in a cubic vector field. Nonlinearity 8 (1995), 843–860. | DOI | MR | Zbl

[36] W. Stephen: A System for Doing Mathematics by Computer. Wolfram Research Mathematica, 1988. | Zbl