On the extension of subadditive measures in lattice ordered groups
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 95-103 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A lattice ordered group valued subadditive measure is extended from an algebra of subsets of a set to a $\sigma $-algebra.
A lattice ordered group valued subadditive measure is extended from an algebra of subsets of a set to a $\sigma $-algebra.
Classification : 06F15, 28B10, 28B15
Keywords: subadditive measure; lattice ordered groups
@article{CMJ_2007_57_1_a7,
     author = {Vr\'abelov\'a, Marta},
     title = {On the extension of subadditive measures in lattice ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {95--103},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309951},
     zbl = {1174.28315},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a7/}
}
TY  - JOUR
AU  - Vrábelová, Marta
TI  - On the extension of subadditive measures in lattice ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 95
EP  - 103
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a7/
LA  - en
ID  - CMJ_2007_57_1_a7
ER  - 
%0 Journal Article
%A Vrábelová, Marta
%T On the extension of subadditive measures in lattice ordered groups
%J Czechoslovak Mathematical Journal
%D 2007
%P 95-103
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a7/
%G en
%F CMJ_2007_57_1_a7
Vrábelová, Marta. On the extension of subadditive measures in lattice ordered groups. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 95-103. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a7/

[1] V. N.  Alexiuk, F. D.  Beznosikov: Extension of continuous outer measure on a Boolean algebra. Izv. VUZ 4(119) (1972), 3–9. (Russian)

[2] I. Dobrakov: On subadditive operators on  $C_0(T)$. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972), 561–562. | MR | Zbl

[3] L. Drewnowski: Topological rings of sets, continuous set functions, integration  I. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972), 269–276. | MR | Zbl

[4] L. Drewnowski: Topological rings of sets, continuous set functions, integration  II. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972), 277–286. | MR | Zbl

[5] D. H. Fremlin: A direct proof of the Mathes-Wright integral extension theorem. J.  London Math. Soc.,  II. Ser.  11 (1975), 267–284. | MR

[6] B. Riečan: An extension of the Daniell integration scheme. Mat. Čas. 25 (1975), 211–219. | MR

[7] B. Riečan, T.  Neubrunn: Integral, Measure and Ordering. Mathematics and its Applications,  411. Kluwer, Dordrecht, 1997. | MR

[8] B.  Riečan, P.  Volauf: On a technical lemma in lattice ordered groups. Acta Math. Univ. Comenianae 44–45 (1984), 31–35. | MR