@article{CMJ_2007_57_1_a6,
author = {Pradolini, Gladis and Salinas, Oscar},
title = {Commutators of singular integrals on spaces of homogeneous type},
journal = {Czechoslovak Mathematical Journal},
pages = {75--93},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309950},
zbl = {1174.42322},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a6/}
}
Pradolini, Gladis; Salinas, Oscar. Commutators of singular integrals on spaces of homogeneous type. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 75-93. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a6/
[1] H. Aimar: Singular integrals and approximate identities on spaces of homogeneous type. Trans. Am. Math. Soc. 292 (1985), 135–153. | DOI | MR | Zbl
[2] H. Aimar: Rearrangement and continuity properties of ${\mathrm BMO}(\phi )$ functions on spaces of homogeneous type. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 353–362. | MR
[3] M. Bramanti, M. C. Cerutti: Commutators of singular integrals and fractional integrals on homogeneous spaces. In: Harmonic Analysis and Operator Theory. Proceedings of the conference in honor of Mischa Cotlar, January 3–8, 1994, Caracas, Venezuela, S. A. M. Marcantognini et al. (eds.), Am. Math. Soc., Providence. | MR
[4] M. Bramanti, M. C. Cerutti: Commutators of singular integrals on homogeneous spaces. Boll. Unione Mat. Ital., VII. Ser. B 10 (1996), 843–883. | MR
[5] R. Coifman: Distribution function inequalities for singular integrals. Proc. Natl. Acad. Sci. USA 69 (1972), 2838–2839. | DOI | MR | Zbl
[6] R. Coifman, G. Weiss: Analyse harmonique non-commutative sur certains espaces homogènes. Lecture Notes in Mathematics, Vol. 242. Springer-Verlag, Berlin-New York, 1971. | DOI | MR
[7] R. Coifman, R. Rochberg, and G. Weiss: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103 (1976), 611–635. | DOI | MR
[8] F. Chiarenza, M. Frasca, and P. Longo: Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients. Ric. Mat. 40 (1991), 149–168. | MR
[9] F. Chiarenza, M. Frasca, and P. Longo: $W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336 (1993), 841–853. | MR
[10] G. Di Fazio, M. A. Ragusa: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112 (1993), 241–256. | DOI | MR
[11] B. Franchi, C. E. Gutiérrez, and R. Wheeden: Weighted Sobolev-Poincaré inequalities for Grushin type operators. Comm. Partial Differential Equations 19 (1994), 523–604. | DOI | MR
[12] C. Fefferman, E. M. Stein: Some maximal inequalities. Amer. J. Math. 93 (1971), 107–115. | DOI | MR
[13] J. L. Journé: Calderón Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Lecture Notes in Mathematics Vol. 994. Springer-Verlag, Berlin-New York, 1983. | MR
[14] R. Macías, C. Segovia: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33 (1979), 257–270. | DOI | MR
[15] R. Macías, C. Segovia: Singular integrals on generalized Lipschitz and Hardy spaces. Studia Math. 65 (1979), 55–75. | DOI | MR
[16] R. Macías, C. Segovia: A well behaved quasi-distance for spaces of homogeneous type. Trabajos de Matemática, Serie I 32 (1981).
[17] R. O’Neil: Fractional integration in Orlicz spaces. Trans. Amer. Math. Soc. 115 (1965), 300–328. | DOI | MR
[18] C. Pérez: Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. Appl. 3 (1997), 743–756. | DOI | MR
[19] C. Pérez: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128 (1995), 163–185. | DOI | MR
[20] C. Pérez, R. Wheeden: Uncertainty principle estimates for vector fields. J. Funct. Anal. 181 (2001), 146–188. | DOI | MR
[21] G. Pradolini, O. Salinas: Maximal operators on spaces of homogeneous type. Proc. Amer. Math. Soc. 132 (2003), 435–441. | DOI | MR
[22] C. Ríos: The $L^{p}$ Dirichlet problems and non divergence harmonic measure. Trans. Amer. Math. Soc. 355 (2003), 665–687. | DOI | MR
[23] M. Rao, Z. Ren: Theory of Orlicz spaces. Marcel Dekker, New York, 1991. | MR
[24] R. Rochberg, G. Weiss: Derivatives of analytic families of Banach spaces. Ann. Math. 118 (1983), 315–347. | DOI | MR
[25] M. Wilson: Weighted norm inequalities for the continuous square function. Trans. Amer. Math. Soc. 314 (1989), 661–692. | DOI | MR