Bernstein’s analyticity theorem for quantum differences
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 67-73 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider real valued functions $f$ defined on a subinterval $I$ of the positive real axis and prove that if all of $f$’s quantum differences are nonnegative then $f$ has a power series representation on $I$. Further, if the quantum differences have fixed sign on $I$ then $f$ is analytic on $I$.
We consider real valued functions $f$ defined on a subinterval $I$ of the positive real axis and prove that if all of $f$’s quantum differences are nonnegative then $f$ has a power series representation on $I$. Further, if the quantum differences have fixed sign on $I$ then $f$ is analytic on $I$.
Classification : 26A24, 26A48, 26E05
Keywords: difference; quantum difference; quantum derivative; power series
@article{CMJ_2007_57_1_a5,
     author = {Sj\"odin, Tord},
     title = {Bernstein{\textquoteright}s analyticity theorem for quantum differences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {67--73},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309949},
     zbl = {1174.26312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a5/}
}
TY  - JOUR
AU  - Sjödin, Tord
TI  - Bernstein’s analyticity theorem for quantum differences
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 67
EP  - 73
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a5/
LA  - en
ID  - CMJ_2007_57_1_a5
ER  - 
%0 Journal Article
%A Sjödin, Tord
%T Bernstein’s analyticity theorem for quantum differences
%J Czechoslovak Mathematical Journal
%D 2007
%P 67-73
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a5/
%G en
%F CMJ_2007_57_1_a5
Sjödin, Tord. Bernstein’s analyticity theorem for quantum differences. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 67-73. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a5/

[1] S. G. Bernstein: Leçons sur les propriété extrémales et la meilleure approximation des functions analytiques d’une variable réelle. Gautier-Villars, Paris, 1926. (French)

[2] S. G.  Bernstein: Sur les fonctions absolument monotones. Acta Math. 52 (1928), 1–66. | DOI

[3] G.  Gasper, M.  Rahman: Basic hypergeometric series. Encyclopaedia of Mathematics and its Applications 34, Cambridge University Press, Cambridge, 1990. | MR

[4] J. H. B.  Kemperman: On the regularity of generalized convex functions. Trans. Amer. Math. Soc. 135 (1969), 69–93. | DOI | MR

[5] V.  Kac, P.  Cheung: Quantum Calculus. Springer-Verlag, New York, 2002. | MR

[6] J. M.  Ash, S. Catoiu, and R.  Rios-Collantes-de-Teran: On the $n$th quantum derivative. J.  London Math. Soc. 66 (2002), 114–130. | DOI | MR

[7] T.  Sjödin: Bernstein’s analyticity theorem for binary differences. Math. Ann. 315 (1999), 251–261. | DOI | MR

[8] T.  Sjödin: On generalized differences and Bernstein’s analyticity theorem. Research report No  9, Department of Mathematics, University of Umeå, Umeå, 2003.