Keywords: difference; quantum difference; quantum derivative; power series
@article{CMJ_2007_57_1_a5,
author = {Sj\"odin, Tord},
title = {Bernstein{\textquoteright}s analyticity theorem for quantum differences},
journal = {Czechoslovak Mathematical Journal},
pages = {67--73},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309949},
zbl = {1174.26312},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a5/}
}
Sjödin, Tord. Bernstein’s analyticity theorem for quantum differences. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 67-73. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a5/
[1] S. G. Bernstein: Leçons sur les propriété extrémales et la meilleure approximation des functions analytiques d’une variable réelle. Gautier-Villars, Paris, 1926. (French)
[2] S. G. Bernstein: Sur les fonctions absolument monotones. Acta Math. 52 (1928), 1–66. | DOI
[3] G. Gasper, M. Rahman: Basic hypergeometric series. Encyclopaedia of Mathematics and its Applications 34, Cambridge University Press, Cambridge, 1990. | MR
[4] J. H. B. Kemperman: On the regularity of generalized convex functions. Trans. Amer. Math. Soc. 135 (1969), 69–93. | DOI | MR
[5] V. Kac, P. Cheung: Quantum Calculus. Springer-Verlag, New York, 2002. | MR
[6] J. M. Ash, S. Catoiu, and R. Rios-Collantes-de-Teran: On the $n$th quantum derivative. J. London Math. Soc. 66 (2002), 114–130. | DOI | MR
[7] T. Sjödin: Bernstein’s analyticity theorem for binary differences. Math. Ann. 315 (1999), 251–261. | DOI | MR
[8] T. Sjödin: On generalized differences and Bernstein’s analyticity theorem. Research report No 9, Department of Mathematics, University of Umeå, Umeå, 2003.