Bernstein’s analyticity theorem for quantum differences
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 67-73
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We consider real valued functions $f$ defined on a subinterval $I$ of the positive real axis and prove that if all of $f$’s quantum differences are nonnegative then $f$ has a power series representation on $I$. Further, if the quantum differences have fixed sign on $I$ then $f$ is analytic on $I$.
We consider real valued functions $f$ defined on a subinterval $I$ of the positive real axis and prove that if all of $f$’s quantum differences are nonnegative then $f$ has a power series representation on $I$. Further, if the quantum differences have fixed sign on $I$ then $f$ is analytic on $I$.
Classification :
26A24, 26A48, 26E05
Keywords: difference; quantum difference; quantum derivative; power series
Keywords: difference; quantum difference; quantum derivative; power series
@article{CMJ_2007_57_1_a5,
author = {Sj\"odin, Tord},
title = {Bernstein{\textquoteright}s analyticity theorem for quantum differences},
journal = {Czechoslovak Mathematical Journal},
pages = {67--73},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309949},
zbl = {1174.26312},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a5/}
}
Sjödin, Tord. Bernstein’s analyticity theorem for quantum differences. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 67-73. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a5/