Keywords: representation theory; intertwining number; Weyl module; $\mathop {\mathrm Ext}\nolimits $ group; partition
@article{CMJ_2007_57_1_a4,
author = {Ko, Hyoung J. and Lee, Kyoung J.},
title = {Intertwining numbers; the $n$-rowed shapes},
journal = {Czechoslovak Mathematical Journal},
pages = {53--65},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309948},
zbl = {1166.20036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a4/}
}
Ko, Hyoung J.; Lee, Kyoung J. Intertwining numbers; the $n$-rowed shapes. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a4/
[1] K. Akin, D. A. Buchsbaum: Characteristic-free representation theory of the general linear group. Adv. Math. 58 (1985), 149–200. | DOI | MR
[2] K. Akin, D. A. Buchsbaum: Characteristic-free representation theory of the general linear group, II. Homological considerations. Adv. Math. 72 (1988), 171–210. | DOI | MR
[3] K. Akin, D. A. Buchsbaum: Representations, resolutions and intertwining numbers. In: Communications in Algebra, Springer-Verlag, Berlin-New York, 1989, pp. 1–19. | MR
[4] K. Akin, D. A. Buchsbaum: Resolutions and intertwining numbers. In: Proceedings of a Micro-program, June 15–July 2, 1987, Springer-Verlag, New York.
[5] K. Akin, D. A. Buchsbaum, and J. Weyman: Schur functors and Schur complexes. Adv. Math. 44 (1982), 207–278. | DOI | MR
[6] K. Akin, J. Weyman: The irreducible tensor representations of $gl(m\mathrel | 1)$ and their generic homology. J. Algebra 230 (2000), 5–23. | DOI | MR
[7] D. A. Buchsbaum: Aspects of characteristic-free representation theory of ${\mathrm GL}_n$, and some application to intertwining numbers. Acta Applicandae Mathematicae 21 (1990), 247–261. | DOI | MR
[8] D. A. Buchsbaum, D. Flores de Chela: Intertwining numbers; the three-rowed case. J. Algebra 183 (1996), 605–635. | DOI | MR
[9] M. Clausen: Letter place algebras and a characteristic-free approach to the representation theory of the general linear and symmetric groups. Adv. Math. 33 (1979), 161–191. | DOI | MR | Zbl
[10] R. W. Carter, G. Lusztig: On the modular representation of the general linear and symmetric groups. Math. Z. 136 (1974), . | MR
[11] R. W. Cater, J. Payne: On homomorphism between Weyl modules and Specht modules. Math. Proc. Cambridge Philos. Soc. 87 (1980), . | MR
[12] D. Flores de Chela: On intertwining numbers. J. Algebra 171 (1995), 631–653. | DOI | MR
[13] W. Fulton, J. Harris: Representation Theory. A First Course. Springer-Verlag, New York, 1991. | MR
[14] D. Flores de Chela, M. A. Mendez: Equivariant representations of the symmetric groups. Adv. Math. 97 (1993), 191–230. | DOI | MR
[15] J. A. Green: Polynomial Representation of ${\mathrm GL}_n$. Lectures Notes in Mathematics, No. 830. Springer-Verlag, Berlin, 1980.
[16] N. Jacobson: Basic Algebra II. W. H. Freeman and Company, , 1980. | MR | Zbl
[17] U. Kulkarni: Skew Weyl modules for ${\mathop {\mathrm GL}\nolimits }_n$ and degree reduction for Schur algebras. J. Algebra 224 (2000), 248–262. | DOI | MR
[18] P. Magyar: Borel-Weil theorem for configuration varieties and Schur modules. Adv. Math. 134 (1998), 328–366. | DOI | MR | Zbl
[19] G. Murphy, M. H. Peel: Representation of symmetric groups by bad shapes. J. Algebra 116 (1988), 143–154. | DOI | MR
[20] P. Martin, D. Woodcock: The partition algebras and a new deformation of the Schur algebras. J. Algebra 203 (1998), 91–124. | DOI | MR
[21] V. Reiner, M. Shimozono: Specht series for column-convex diagrams. J. Algebra 174 (1995), 489–522. | DOI | MR
[22] M. Teresa, F. Oliveira-Martins: On homomorphisms between Weyl modules for hook partitions. Linear Multilinear Algebra 23 (1988), 305–323. | DOI | MR