Cohomology operations and the Deligne conjecture
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 473-503 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this note, which raises more questions than it answers, is to study natural operations acting on the cohomology of various types of algebras. It contains a lot of very surprising partial results and examples.
The aim of this note, which raises more questions than it answers, is to study natural operations acting on the cohomology of various types of algebras. It contains a lot of very surprising partial results and examples.
Classification : 18D50, 55P48, 55S25
Keywords: cohomology; natural operation
@article{CMJ_2007_57_1_a35,
     author = {Markl, M.},
     title = {Cohomology operations and the {Deligne} conjecture},
     journal = {Czechoslovak Mathematical Journal},
     pages = {473--503},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309979},
     zbl = {1174.55002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a35/}
}
TY  - JOUR
AU  - Markl, M.
TI  - Cohomology operations and the Deligne conjecture
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 473
EP  - 503
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a35/
LA  - en
ID  - CMJ_2007_57_1_a35
ER  - 
%0 Journal Article
%A Markl, M.
%T Cohomology operations and the Deligne conjecture
%J Czechoslovak Mathematical Journal
%D 2007
%P 473-503
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a35/
%G en
%F CMJ_2007_57_1_a35
Markl, M. Cohomology operations and the Deligne conjecture. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 473-503. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a35/

[1] C. Berger: Combinatorial models for real configuration spaces and $E_n$-operads. In: Operads: Proceedings of Renaissance Conferences. Contemporary Math., Vol. 202, J. L.  Loday, J. D.  Stasheff, and A. A.  Voronov (eds.), Am. Math. Soc., 1997, pp. 37–52. | MR

[2] F. Chapoton, M. Livernet: Pre-Lie algebras and the rooted trees operad. Internat. Math. Res. Not. 8 (2001), 395–408. | MR

[3] I. Ciocan-Fontanine, M. Kapranov: Derived Hilbert schemes. J.  Am. Math. Soc. 15 (2002), 787–815. | DOI | MR

[4] I. Ciocan-Fontanine, M. M.  Kapranov: Derived Quot schemes. Ann. Sci. Éc. Norm. Supér, IV.  Sér. 34 (2001), 403–440. | DOI | MR

[5] P. Deligne: A letter to Stasheff, Gerstenhaber, May, Schechtman and Drinfeld. Unpublished, 1993.

[6] A. Dzhumadil’daev, C. Löfwall: Trees, free right-symmetric algebras, free Novikov algebras and identities. Homotopy Homology Appl. 4 (2002), 165–190. | MR

[7] Z. Fiedorowicz: The symmetric bar construction. Preprint, available from the author’s home page.

[8] T. F.  Fox, M. Markl: Distributive laws, bialgebras, and cohomology. Operads: Proceedings of Renaissance Conferences. Contemporary Math., Vol.  202, J.-L.  Loday, J. D.  Stasheff, and A. A.  Voronov (eds.), 1997, pp. 167–205. | MR

[9] M. Gerstenhaber: The cohomology structure of an associative ring. Ann. Math. 78 (1963), 267–288. | DOI | MR | Zbl

[10] M. Gerstenhaber, S. D.  Schack: Algebraic cohomology and deformation theory. In: Deformation Theory of Algebras and Structures and Applications, Kluwer, Dordrecht, 1988, pp. 11–264. | MR

[11] M. Gerstenhaber, A. A.  Voronov: Higher operations on the Hochschild complex. Funct. Anal. Appl. 29 (1995), 1–5. (Russian) | DOI | MR

[12] E. Getzler, J. D. S.  Jones: Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint hep-th/9403055, March  1994.

[13] V. Ginzburg, M. M.  Kapranov: Koszul duality for operads. Duke Math.  J. 76 (1994), 203–272. | DOI | MR

[14] V. Hinich: Tamarkin’s proof of Kontsevich formality theorem. Forum Mathematicum 15 (2003), 591–614. | MR | Zbl

[15] P. Hu: Higher string topology on general spaces. Proc. London Math. Soc. 93 (2006), 515–544. | DOI | MR | Zbl

[16] P. Hu, I. Kříž, and A. A.  Voronov: On Kontsevich’s Hochschild cohomology conjecture. Compos. Math. 142 (2006), 143–168. | MR

[17] R. M.  Kaufmann: On spineless cacti, Deligne’s conjecture and Connes-Kreimer’s Hopf algebra. Preprint  math.QA/0308005, August  2003. | MR | Zbl

[18] A. A.  Klyachko: Lie elements in the tensor algebra. Sib. Math.  J. 15 (1974), 914–920. | DOI

[19] J. Kock, B. Toën: Simplicial localization of monoidal structures, and a non-linear version of Deligne’s conjecture. Compos. Math. 141 (2005), 253–261. | MR

[20] M. Kontsevich, Y. Soibelman: Deformations of algebras over operads and Deligne’s conjecture. Math. Phys. Stud. 21 (2000), 255–307. | MR

[21] I. Kříž, J. P.  May: Operads, Algebras, Modules and Motives. Astérisque, Vol.  233. Société Mathématique de France, 1995. | MR

[22] T. Lada, M. Markl: Symmetric brace algebras. Appl. Categorical Structures 13 (2005), 351–370. | DOI | MR

[23] M. Markl: Cotangent cohomology of a category of deformations. J.  Pure Appl. Algebra 113 (1996), 195–218. | DOI | MR | Zbl

[24] M. Markl: Models for operads. Commun. Algebra 24 (1996), 1471–1500. | DOI | MR | Zbl

[25] M. Markl: The existence of intrinsic brackets on the cohomology of bialgebras. Preprint  math.AT/0411456, November  2004.

[26] M. Markl, S. Shnider, and J. D.  Stasheff: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, Vol. 96. American Mathematical Society, Providence, 2002. | MR

[27] J. P.  May: The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics, Vol.  271. Springer-Verlag, New York, 1972. | MR

[28] J. E.  McClure, J. H.  Smith: A solution of Deligne’s Hochschild cohomology conjecture. In: Proceedings of the JAMI  conference on Homotopy Theory. Contemp. Math. Vol. 293, 2002, pp. 153–193. | MR

[29] J. E.  McClure, J. H.  Smith: Multivariable cochain operations and little $n$-cubes. J.  Am. Math. Soc. 16 (2003), 681–704. | DOI | MR

[30] P. Salvatore: Configuration spaces with summable labels. In: Cohomological Methods in Homotopy Theory. Proceedings of the Barcelona conference on algebraic topology (BCAT), Bellaterra, Spain, June 4-10, 1998. Prog. Math.  196, J. Aguadé (ed.), Birkhäuser-Verlag, Basel, 2001, pp. 375–395. | MR | Zbl

[31] M. Schlessinger, J. D.  Stasheff: The Lie algebra structure of tangent cohomology and deformation theory. J.  Pure Appl. Algebra 38 (1985), 313–322. | DOI | MR

[32] D. Tamarkin, B. Tsygan: Cyclic formality and index theorem. Lett. Math. Phys. 56 (2001), 85–97. | DOI | MR

[33] D. E.  Tamarkin: Another proof of M. Kontsevich formality theorem. Preprint  math.QA/9803025, March  1998.

[34] D. E.  Tamarkin: Formality of chain operad of little discs. Lett. Math. Phys. 66 (2003), 65–72. | DOI | MR | Zbl

[35] P. van der Laan: Operads up to homotopy and deformations of operad maps. Preprint  math.QA/0208041, August  2002.

[36] A. A.  Voronov: Homotopy Gerstenhaber algebras. In: Conférence Moshé Flato  1999: Quantization, deformations, and symmetries, II. Math. Phys. Stud. Vol. 22, G. Dito (ed.), Kluwer Academic Publishers, Providence, 2000, pp. 307–331. | MR | Zbl