@article{CMJ_2007_57_1_a33,
author = {Carlip, W. and Somer, L.},
title = {Square-free {Lucas} $d$-pseudoprimes and {Carmichael-Lucas} numbers},
journal = {Czechoslovak Mathematical Journal},
pages = {447--463},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309977},
zbl = {1174.11016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a33/}
}
Carlip, W.; Somer, L. Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 447-463. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a33/
[1] R. Baillie, S. S. Wagstaff, Jr.: Lucas pseudoprimes. Math. Comput. 35 (1980), 1391–1417. | DOI | MR
[2] J. Brillhart, D. H. Lehmer, and J. L. Selfridge: New primality criteria and factorizations of $2^m\pm 1$. Math. Comput. 29 (1975), 620–647. | MR
[3] W. Carlip, E. Jacobson, and L. Somer: Pseudoprimes, perfect numbers, and a problem of Lehmer. Fibonacci Quart. 36 (1998), 361–371. | MR
[4] W. Carlip, L. Somer: Primitive Lucas $d$-pseudoprimes and Carmichael-Lucas numbers. Colloq. Math (to appear). | MR
[5] W. Carlip, L. Somer: Bounds for frequencies of residues of regular second-order recurrences modulo $p^r$. In: Number Theory in Progress, Vol. 2 (Zakopané-Kościelisko, 1997). de Gruyter, Berlin (1999), 691–719. | MR
[6] R. D. Carmichael: On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$. Ann. of Math. (2) 15 (1913), 30–70. | MR
[7] É. Lucas: Théorie des fonctions numériques simplement périodiques. Amer. J. Math. 1 (1878), 184–240, 289–321. (French) | MR
[8] P. Ribenboim: The New Book of Prime Number Records. Springer-Verlag, New York, 1996. | MR | Zbl
[9] J. Roberts: Lure of the Integers. Mathematical Association of America, Washington, DC, 1992. | MR
[10] L. Somer: On Lucas $d$-pseudoprimes. In: Applications of Fibonacci Numbers, Vol. 7 (Graz, 1996). Kluwer Academic Publishers, Dordrecht (1998), 369–375. | MR | Zbl
[11] H. C. Williams: On numbers analogous to the Carmichael numbers. Can. Math. Bull. 20 (1977), 133–143. | DOI | MR | Zbl