Keywords: rigidity; hypersurfaces; topology; hyperbolic space
@article{CMJ_2007_57_1_a32,
author = {Wang, Qiaoling and Xia, Changyu},
title = {Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space},
journal = {Czechoslovak Mathematical Journal},
pages = {435--445},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309976},
zbl = {1174.53318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a32/}
}
TY - JOUR AU - Wang, Qiaoling AU - Xia, Changyu TI - Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space JO - Czechoslovak Mathematical Journal PY - 2007 SP - 435 EP - 445 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a32/ LA - en ID - CMJ_2007_57_1_a32 ER -
Wang, Qiaoling; Xia, Changyu. Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 435-445. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a32/
[1] A. D. Alexandrov: A characteristic property of spheres. Ann. Mat. Pura Appl. 58 (1962), 303–315. | DOI | MR
[2] H. Alencar, M. do Carmo, and W. Santos: A gap theorem for hypersurfaces of the sphere with constant scalar curvature one. Comment. Math. Helv. 77 (2002), 549–562. | DOI | MR
[3] S. Alexander: Locally convex hypersurfaces of negatively curved spaces. Proc. Amer. Math. Soc. 64 (1977), 321–325. | DOI | MR | Zbl
[4] S. S. Chern, M. do Carmo, and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length. In: Functional Analysis and Related Fields, F. Browder (ed.), Springer-Verlag, Berlin, 1970, pp. 59–75. | MR
[5] M. P. do Carmo: Riemannian Geometry. Bikhäuser-Verlag, Boston, 1993.
[6] M. P. do Carmo, F. W. Warner: Rigidity and convexity of hypersurfaces in spheres. J. Diff. Geom. 4 (1970), 133–144. | DOI | MR
[7] S. Y. Cheng, S. T. Yau: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. | DOI | MR
[8] P. Hartman, L. Nirenberg: On spherical image maps whose Jacobians do not change sign. Amer. J. Math. 81 (1959), 901–920. | DOI | MR
[9] H. Z. Li: Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996), 665–672. | DOI | MR | Zbl
[10] W. S. Massey: Algebraic Topology: An Introduction. 4th corr. print. Graduate Texts in Mathematics Vol. 56. Springer-Verlag, New York-Heidelberg-Berlin, 1967. | MR
[11] S. Montiel, A. Ros: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Differential geometry. Pitman Monographs. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991, pp. 279–296. | MR
[12] M. Okumura: Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J. Math. 96 (1974), 207–214. | DOI | MR | Zbl
[13] C. K. Peng, C. L. Terng: Minimal hypersurfaces of spheres with constant scalar curvature. Ann. Math. Stud. 103 (1983), 177–198. | MR
[14] C. K. Peng, C. L. Terng: The scalar curvature of minimal hypersurfaces in spheres. Math. Ann. 266 (1983), 105–113. | DOI | MR
[15] A. Ros: Compact hypersurfaces with constant scalar curvature and a congruence theorem. J. Differential Geom. 27 (1988), 215–223. | DOI | MR | Zbl
[16] A. Ros: Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoamericana 3 (1987), 447–453. | MR | Zbl
[17] R. Sacksteder: On hypersurfaces with no negative sectional curvatures. Amer. J. Math. 82 (1960), 609–630. | DOI | MR | Zbl
[18] J. Simons: Minimal varieties in Riemannian manifolds. Ann. Math. 88 (1968), 62–105. | DOI | MR | Zbl