Keywords: domination number; paired-domination number; tree
@article{CMJ_2007_57_1_a30,
author = {Chen, Xue-Gang},
title = {Vertices contained in all minimum paired-dominating sets of a tree},
journal = {Czechoslovak Mathematical Journal},
pages = {407--417},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309974},
zbl = {1174.05090},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a30/}
}
Chen, Xue-Gang. Vertices contained in all minimum paired-dominating sets of a tree. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 407-417. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a30/
[1] P. L. Hammer, P. Hansen and B. Simeone: Vertices belonging to all or to no maximum stable sets of a graph. SIAM J. Algebraic Discrete Math. 3 (1982), 511–522. | DOI | MR
[2] C. M. Mynhardt: Vertices contained in every minimum dominating set of a tree. J. Graph Theory 31 (1999), 163–177. | DOI | MR | Zbl
[3] E. J. Cockayne, M. A. Henning and C. M. Mynhardt: Vertices contained in all or in no minimum total dominating set of a tree. Discrete Math. 260 (2003), 37–44. | DOI | MR
[4] T. W. Haynes and P. J. Slater: Paired-domination in graphs. 32 (1998), Networks, 199–206. | MR
[5] T. W. Haynes, M. A. Henning and P. J. Slater: Strong equality of domination parameters in trees. Discrete Math. 260 (2003), 77–87. | DOI | MR
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater: Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998. | MR
[7] Domination in Graphs: Advanced Topics. T. W. Haynes, S. T. Hedetniemi and P. J. Slater (eds.), Marcel Dekker, New York, 1998. | MR | Zbl