Keywords: residuated $\ell $-monoid; residuated lattice; $BL$-algebra; $MV$-algebra; local $R\ell $-monoid; filter
@article{CMJ_2007_57_1_a29,
author = {Rach\r{u}nek, Ji\v{r}{\'\i} and \v{S}alounov\'a, Dana},
title = {Local bounded commutative residuated $\ell$-monoids},
journal = {Czechoslovak Mathematical Journal},
pages = {395--406},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309973},
zbl = {1174.06331},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a29/}
}
Rachůnek, Jiří; Šalounová, Dana. Local bounded commutative residuated $\ell$-monoids. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 395-406. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a29/
[1] P. Bahls, J. Cole, N. Galatos, P. Jipsen, and C. Tsinakis: Cancellative residuated lattices. Alg. Univ. 50 (2003), 83–106. | DOI | MR
[2] K. Blount, C. Tsinakis: The structure of residuated lattices. Intern. J. Alg. Comp. 13 (2003), 437–461. | DOI | MR
[3] R. L. O. Cignoli, I. M. L. D’Ottaviano, and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. | MR
[4] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. | MR
[5] A. Dvurečenskij, J. Rachůnek: Probabilistic averaging in bounded residuated $\ell $-monoids. Semigroup Forum. 72 (2006), 191–206. | DOI | MR
[6] A. Dvurečenskij, J. Rachůnek: Bounded commutative residuated $\ell $-monoids with general comparability and states. Soft Comput. 10 (2006), 212–218. | DOI
[7] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998. | MR
[8] P. Jipsen, C. Tsinakis: A survey of residuated lattices. In: Ordered Algebraic Structures, J. Martinez (ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. | MR
[9] J. Rachůnek: $DR\ell $-semigroups and $MV$-algebras. Czechoslovak Math. J. 48 (1998), 365–372. | DOI | MR
[10] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$ semigroups. Math. Bohemica 123 (1998), 437–441. | MR
[11] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids. Math. Bohemica 126 (2001), 561–569. | MR
[12] J. Rachůnek, D. Šalounová: Boolean deductive systems of bounded commutative residuated $\ell $-monoids. Contrib. Gen. Algebra 16 (2005), 199–207. | MR
[13] J. Rachůnek, V. Slezák: Negation in bounded commutative $DR\ell $-monoids. Czechoslovak Math. J. 56 (2006), 755–763. | DOI | MR
[14] J. Rachůnek, V. Slezák: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca. 56 (2006), 223–233. | MR
[15] K. L. N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. | DOI | MR | Zbl
[16] K. L. N. Swamy: Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71–74. | DOI | MR | Zbl
[17] E. Turunen: Mathematics Behind Fuzzy Logic. Physica-Verlag, Heidelberg-New York, 1999. | MR | Zbl
[18] E. Turunen, S. Sessa: Local $BL$-algebras. Multip. Val. Logic 6 (2001), 229–250. | MR