Spaces with large relative extent
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 387-394 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we prove the following statements: (1) For every regular uncountable cardinal $\kappa $, there exist a Tychonoff space $X$ and $Y$ a subspace of $X$ such that $Y$ is both relatively absolute star-Lindelöf and relative property (a) in $X$ and $e(Y,X) \ge \kappa $, but $Y$ is not strongly relative star-Lindelöf in $X$ and $X$ is not star-Lindelöf. (2) There exist a Tychonoff space $X$ and a subspace $Y$ of $X$ such that $Y$ is strongly relative star-Lindelöf in $X$ (hence, relative star-Lindelöf), but $Y$ is not absolutely relative star-Lindelöf in $X$.
In this paper, we prove the following statements: (1) For every regular uncountable cardinal $\kappa $, there exist a Tychonoff space $X$ and $Y$ a subspace of $X$ such that $Y$ is both relatively absolute star-Lindelöf and relative property (a) in $X$ and $e(Y,X) \ge \kappa $, but $Y$ is not strongly relative star-Lindelöf in $X$ and $X$ is not star-Lindelöf. (2) There exist a Tychonoff space $X$ and a subspace $Y$ of $X$ such that $Y$ is strongly relative star-Lindelöf in $X$ (hence, relative star-Lindelöf), but $Y$ is not absolutely relative star-Lindelöf in $X$.
Classification : 54D15, 54D20
Keywords: relative topological property; Lindelöf; star-Lindelöf; relative extent; relative property (a)
@article{CMJ_2007_57_1_a28,
     author = {Song, Yan-Kui},
     title = {Spaces with large relative extent},
     journal = {Czechoslovak Mathematical Journal},
     pages = {387--394},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309972},
     zbl = {1174.54014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a28/}
}
TY  - JOUR
AU  - Song, Yan-Kui
TI  - Spaces with large relative extent
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 387
EP  - 394
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a28/
LA  - en
ID  - CMJ_2007_57_1_a28
ER  - 
%0 Journal Article
%A Song, Yan-Kui
%T Spaces with large relative extent
%J Czechoslovak Mathematical Journal
%D 2007
%P 387-394
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a28/
%G en
%F CMJ_2007_57_1_a28
Song, Yan-Kui. Spaces with large relative extent. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 387-394. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a28/

[1] A. V.  Arhangel’skii, M. M. Genedi Hamdi: The origin of the theory of relative topological properties. General Topology, Space and Mappings, Moskov. Gos. Univ., Moscow, 1989, pp. 3–48. (Russian) | MR

[2] A. V.  Arhangel’skii: A generic theorem in the theory of cardinal invariants of topological spaces. Comment. Math. Univ. Carolinae 36 (1995), 303–325. | MR

[3] A. V.  Arhangel’skii: Relative topological properties and relative topological spaces. Topology Appl. 70 (1996), 87–99. | DOI | MR

[4] M.  Bonanzinga: Star-Lindelöf and absolutely star-Lindelöf spaces. Q and A in General Topology 14 (1998), 79–104. | MR | Zbl

[5] E. K.  van Douwen, G. M.  Reed, A. W.  Roscoe, and I. J.  Tree: Star covering properties. Topology Appl. 39 (1991), 71–103. | DOI | MR

[6] M. Dai: A class of topological spaces containing Lindelöf spaces and separable spaces. Chin. Ann. Math. Ser.  A 4 (1983), 571–575. | MR

[7] R.  Engelking: General Topology. Rev. and compl. ed. Heldermann-Verlag, Berlin, 1989. | MR | Zbl

[8] Lj. D.  Kocinac: Some relative topological properties. Mat. Ves. 44 (1992), 33–44. | MR | Zbl

[9] M. V.  Matveev: Absolutely countably compact spaces. Topology Appl. 58 (1994), 81–92. | DOI | MR | Zbl

[10] M. V.  Matveev: A survey on star covering properties. Topology Atlas, preprint No.  330 (1998).

[11] M. V.  Matveev: A survey on star covering properties  II. Topology Atlas, preprint No.  431 (2000).

[12] M. V.  Matveev: Some questions on property  (a). Quest. Answers Gen. Topology 15 (1997), 103–111. | MR | Zbl

[13] M. V.  Matveev, O. I.  Pavlov, and J. K.  Tartir: On relatively normal spaces, relatively regular spaces, and on relative property  (a). Topology Appl. 93 (1999), 121–129. | DOI | MR

[14] M. V.  Matveev: How weak is weak extent?. Topology Appl. 119 (2002), 229–232. | DOI | MR | Zbl

[15] M. V.  Matveev: On space in countable web. Preprint.

[16] Y-K.  Song: Spaces with large extent and large star-Lindelöf number. Houston. J.  Math. 29 (2003), 345–352. | MR | Zbl

[17] Y-K. Song: Discretely star-Lindelöf spaces. Tsukuba J.  Math. 25 (2001), 371–382. | DOI | MR | Zbl

[18] Y-K. Song: On relative star-Lindelöf spaces. N. Z. Math 34 (2005), 159–163. | MR | Zbl

[19] Y.  Yasui, Z-M. Gao: Spaces in countable web. Houston.  J. Math. 25 (1999), 327–335. | MR

[20] J. E.  Vaughan: Absolute countable compactness and property  (a). Proceedings of the Eighth Prague Topological symposium, August  1996, 1996, pp. 18–24.