Keywords: $\scr{I}$-convergence; positive linear operator; the classical Korovkin theorem
@article{CMJ_2007_57_1_a26,
author = {Duman, O.},
title = {A {Korovkin} type approximation theorems via $\scr I$-convergence},
journal = {Czechoslovak Mathematical Journal},
pages = {367--375},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309970},
zbl = {1174.41004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a26/}
}
Duman, O. A Korovkin type approximation theorems via $\scr I$-convergence. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 367-375. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a26/
[1] R. Bojanic, F. Cheng: Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejer polynomials. Proceedings of the Conference of Canadian Math. Soc. 3 (1983), 5–17. | MR
[2] R. Bojanic, M. K. Khan: Summability of Hermite-Fejer interpolation for functions of bounded variation. J. Nat. Sci. Math. 32 (1992), 5–10.
[3] I. Chlodovsky: Sur la representation des fonctions discontinuous par les polynômes de M. S. Bernstein. Fund. Math. 13 (1929), 62–72. | DOI
[4] J. S. Connor: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32 (1989), 194–198. | DOI | MR | Zbl
[5] O. Duman, C. Orhan: Statistical approximation by positive linear operators. Stud. Math. 161 (2004), 187–197. | DOI | MR
[6] O. Duman, M. K. Khan, C. Orhan: $A$-statistical convergence of approximating operators. Math. Inequal. Appl. 4 (2003), 689–699. | MR
[7] H. Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241–244. | DOI | MR | Zbl
[8] A. R. Freedman, J. J. Sember: Densities and summability. Pacific J. Math. 95 (1981), 293–305. | DOI | MR
[9] J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301–313. | MR | Zbl
[10] J. A. Fridy, H. I. Miller: A matrix characterization of statistical convergence. Analysis 11 (1991), 59–66. | DOI | MR
[11] G. H. Hardy: Divergent Series. Oxford Univ. Press, London, 1949. | MR | Zbl
[12] M. K. Khan, B. Della Vecchia, A. Fassih: On the monotonicity of positive linear operators. J. Approximation Theory 92 (1998), 22–37. | DOI | MR
[13] E. Kolk: Matrix summability of statistically convergent sequences. Analysis 13 (1993), 77–83. | DOI | MR | Zbl
[14] P. P. Korovkin: Linear Operators and Theory of Approximation. Hindustan Publ. Comp., Delhi, 1960. | MR
[15] P. Kostyrko, T. Šalát, W. Wilczyński: ${I}$-convergence. Real Anal. Exchange 26 (2000/01), 669–685. | MR
[16] C. Kuratowski: Topologie I. PWN, Warszawa, 1958.
[17] H. I. Miller: A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347 (1995), 1811–1819. | DOI | MR | Zbl
[18] I. Niven, H. S. Zuckerman, H. Montgomery: An Introduction to the Theory of Numbers. 5th Edition. Wiley, New York, 1991. | MR
[19] H. L. Royden: Real Analysis. 2nd edition. Macmillan Publ., New York, 1968. | MR