A Korovkin type approximation theorems via $\scr I$-convergence
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 367-375 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Using the concept of $\mathcal {I}$-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.
Using the concept of $\mathcal {I}$-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.
Classification : 40A99, 41A10, 41A25, 41A36
Keywords: $\scr{I}$-convergence; positive linear operator; the classical Korovkin theorem
@article{CMJ_2007_57_1_a26,
     author = {Duman, O.},
     title = {A {Korovkin} type approximation theorems via $\scr I$-convergence},
     journal = {Czechoslovak Mathematical Journal},
     pages = {367--375},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309970},
     zbl = {1174.41004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a26/}
}
TY  - JOUR
AU  - Duman, O.
TI  - A Korovkin type approximation theorems via $\scr I$-convergence
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 367
EP  - 375
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a26/
LA  - en
ID  - CMJ_2007_57_1_a26
ER  - 
%0 Journal Article
%A Duman, O.
%T A Korovkin type approximation theorems via $\scr I$-convergence
%J Czechoslovak Mathematical Journal
%D 2007
%P 367-375
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a26/
%G en
%F CMJ_2007_57_1_a26
Duman, O. A Korovkin type approximation theorems via $\scr I$-convergence. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 367-375. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a26/

[1] R.  Bojanic, F.  Cheng: Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejer polynomials. Proceedings of the Conference of Canadian Math. Soc. 3 (1983), 5–17. | MR

[2] R.  Bojanic, M. K. Khan: Summability of Hermite-Fejer interpolation for functions of bounded variation. J.  Nat. Sci. Math. 32 (1992), 5–10.

[3] I.  Chlodovsky: Sur la representation des fonctions discontinuous par les polynômes de M. S.  Bernstein. Fund. Math. 13 (1929), 62–72. | DOI

[4] J. S.  Connor: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32 (1989), 194–198. | DOI | MR | Zbl

[5] O.  Duman, C.  Orhan: Statistical approximation by positive linear operators. Stud. Math. 161 (2004), 187–197. | DOI | MR

[6] O.  Duman, M. K.  Khan, C.  Orhan: $A$-statistical convergence of approximating operators. Math. Inequal. Appl. 4 (2003), 689–699. | MR

[7] H.  Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241–244. | DOI | MR | Zbl

[8] A. R.  Freedman, J. J.  Sember: Densities and summability. Pacific J.  Math. 95 (1981), 293–305. | DOI | MR

[9] J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301–313. | MR | Zbl

[10] J. A.  Fridy, H. I.  Miller: A matrix characterization of statistical convergence. Analysis 11 (1991), 59–66. | DOI | MR

[11] G. H.  Hardy: Divergent Series. Oxford Univ. Press, London, 1949. | MR | Zbl

[12] M. K. Khan, B.  Della Vecchia, A.  Fassih: On the monotonicity of positive linear operators. J.  Approximation Theory 92 (1998), 22–37. | DOI | MR

[13] E. Kolk: Matrix summability of statistically convergent sequences. Analysis 13 (1993), 77–83. | DOI | MR | Zbl

[14] P. P.  Korovkin: Linear Operators and Theory of Approximation. Hindustan Publ. Comp., Delhi, 1960. | MR

[15] P. Kostyrko, T.  Šalát, W.  Wilczyński: ${I}$-convergence. Real Anal. Exchange 26 (2000/01), 669–685. | MR

[16] C. Kuratowski: Topologie  I. PWN, Warszawa, 1958.

[17] H. I.  Miller: A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347 (1995), 1811–1819. | DOI | MR | Zbl

[18] I.  Niven, H. S.  Zuckerman, H.  Montgomery: An Introduction to the Theory of Numbers. 5th Edition. Wiley, New York, 1991. | MR

[19] H. L.  Royden: Real Analysis. 2nd edition. Macmillan Publ., New York, 1968. | MR