Approach regions for the square root of the Poisson kernel and boundary functions in certain Orlicz spaces
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 345-365 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

If the Poisson integral of the unit disc is replaced by its square root, it is known that normalized Poisson integrals of $L^{p}$ and weak $L^{p}$ boundary functions converge along approach regions wider than the ordinary nontangential cones, as proved by Rönning and the author, respectively. In this paper we characterize the approach regions for boundary functions in two general classes of Orlicz spaces. The first of these classes contains spaces $L^{\Phi }$ having the property $L^{\infty }\subset L^{\Phi }\subset L^{p}$, $1\le p\infty $. The second contains spaces $L^{\Phi }$ that resemble $L^{p}$ spaces.
If the Poisson integral of the unit disc is replaced by its square root, it is known that normalized Poisson integrals of $L^{p}$ and weak $L^{p}$ boundary functions converge along approach regions wider than the ordinary nontangential cones, as proved by Rönning and the author, respectively. In this paper we characterize the approach regions for boundary functions in two general classes of Orlicz spaces. The first of these classes contains spaces $L^{\Phi }$ having the property $L^{\infty }\subset L^{\Phi }\subset L^{p}$, $1\le p\infty $. The second contains spaces $L^{\Phi }$ that resemble $L^{p}$ spaces.
Classification : 42A99, 42B25, 43A85, 46E30
Keywords: square root of the Poisson kernel; approach regions; almost everywhere convergence; maximal functions; Orlicz spaces
@article{CMJ_2007_57_1_a25,
     author = {Brundin, M.},
     title = {Approach regions for the square root of the {Poisson} kernel and boundary functions in certain {Orlicz} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {345--365},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309969},
     zbl = {1174.42315},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a25/}
}
TY  - JOUR
AU  - Brundin, M.
TI  - Approach regions for the square root of the Poisson kernel and boundary functions in certain Orlicz spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 345
EP  - 365
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a25/
LA  - en
ID  - CMJ_2007_57_1_a25
ER  - 
%0 Journal Article
%A Brundin, M.
%T Approach regions for the square root of the Poisson kernel and boundary functions in certain Orlicz spaces
%J Czechoslovak Mathematical Journal
%D 2007
%P 345-365
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a25/
%G en
%F CMJ_2007_57_1_a25
Brundin, M. Approach regions for the square root of the Poisson kernel and boundary functions in certain Orlicz spaces. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 345-365. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a25/

[1] H. Aikawa: Harmonic functions having no tangential limits. Proc. Am. Math. Soc. 108 (1990), 457–464. | DOI | MR | Zbl

[2] A. Bellow, R. L. Jones: A Banach principle for $L^\infty $. Adv. Math. 120 (1996), 155–172. | DOI | MR

[3] M. Brundin: Approach regions for the square root of the Poisson kernel and weak $L^p$  boundary functions. Preprint 1999:56, Department of Mathematics, Göteborg University and Chalmers University of Technology, 1999.

[4] M. Brundin: Approach Regions for $L^p$  potentials with respect to fractional powers of the Poisson rernel of the halfspace. Department of Mathematics, Göteborg University and Chalmers University of Technology, 2001.

[5] M. Brundin: Approach regions for $L^p$  potentials with respect to the square root of the Poisson kernel. Math. Scand (to appear). | MR

[6] F. Di Biase: Fatou Type Theorems: Maximal Functions and Approach Regions. Birkhäuser-Verlag, Boston, 1998. | MR | Zbl

[7] P. Fatou: Séries trigonométriques et séries de Taylor. Acta Math. 30 (1906), 335–400. | DOI | MR

[8] J. E.  Littlewood: On a theorem of Fatou. J.  London Math. Soc. 2 (1927), 172–176. | DOI

[9] A. Nagel, E. M.  Stein: On certain maximal functions and approach regions. Adv. Math. 54 (1984), 83–106. | DOI | MR

[10] M. M. Rao, Z. D.  Ren: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 146. Marcel Dekker, New York, 1991. | MR

[11] J.-O.  Rönning: Convergence results for the square root of the Poisson kernel. Math. Scand. 81 (1997), 219–235. | DOI | MR

[12] H. A. Schwarz: Zur Integration der partiellen Differentialgleichung $\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}} =0$. J.  Reine Angew. Math. 74 (1872), 218–253.

[13] P.  Sjögren: Une remarque sur la convergence des fonctions propres du laplacien à valeur propre critique. In: Théorie du potentiel (Orsay,  1983), Springer-Verlag, Berlin, 1984, pp. 544–548. | MR

[14] P. Sjögren: Approach regions for the square root of the Poisson kernel and bounded functions. Bull. Austral. Math. Soc. 55 (1997), 521–527. | DOI | MR