Keywords: square root of the Poisson kernel; approach regions; almost everywhere convergence; maximal functions; Orlicz spaces
@article{CMJ_2007_57_1_a25,
author = {Brundin, M.},
title = {Approach regions for the square root of the {Poisson} kernel and boundary functions in certain {Orlicz} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {345--365},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309969},
zbl = {1174.42315},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a25/}
}
TY - JOUR AU - Brundin, M. TI - Approach regions for the square root of the Poisson kernel and boundary functions in certain Orlicz spaces JO - Czechoslovak Mathematical Journal PY - 2007 SP - 345 EP - 365 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a25/ LA - en ID - CMJ_2007_57_1_a25 ER -
Brundin, M. Approach regions for the square root of the Poisson kernel and boundary functions in certain Orlicz spaces. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 345-365. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a25/
[1] H. Aikawa: Harmonic functions having no tangential limits. Proc. Am. Math. Soc. 108 (1990), 457–464. | DOI | MR | Zbl
[2] A. Bellow, R. L. Jones: A Banach principle for $L^\infty $. Adv. Math. 120 (1996), 155–172. | DOI | MR
[3] M. Brundin: Approach regions for the square root of the Poisson kernel and weak $L^p$ boundary functions. Preprint 1999:56, Department of Mathematics, Göteborg University and Chalmers University of Technology, 1999.
[4] M. Brundin: Approach Regions for $L^p$ potentials with respect to fractional powers of the Poisson rernel of the halfspace. Department of Mathematics, Göteborg University and Chalmers University of Technology, 2001.
[5] M. Brundin: Approach regions for $L^p$ potentials with respect to the square root of the Poisson kernel. Math. Scand (to appear). | MR
[6] F. Di Biase: Fatou Type Theorems: Maximal Functions and Approach Regions. Birkhäuser-Verlag, Boston, 1998. | MR | Zbl
[7] P. Fatou: Séries trigonométriques et séries de Taylor. Acta Math. 30 (1906), 335–400. | DOI | MR
[8] J. E. Littlewood: On a theorem of Fatou. J. London Math. Soc. 2 (1927), 172–176. | DOI
[9] A. Nagel, E. M. Stein: On certain maximal functions and approach regions. Adv. Math. 54 (1984), 83–106. | DOI | MR
[10] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 146. Marcel Dekker, New York, 1991. | MR
[11] J.-O. Rönning: Convergence results for the square root of the Poisson kernel. Math. Scand. 81 (1997), 219–235. | DOI | MR
[12] H. A. Schwarz: Zur Integration der partiellen Differentialgleichung $\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}} =0$. J. Reine Angew. Math. 74 (1872), 218–253.
[13] P. Sjögren: Une remarque sur la convergence des fonctions propres du laplacien à valeur propre critique. In: Théorie du potentiel (Orsay, 1983), Springer-Verlag, Berlin, 1984, pp. 544–548. | MR
[14] P. Sjögren: Approach regions for the square root of the Poisson kernel and bounded functions. Bull. Austral. Math. Soc. 55 (1997), 521–527. | DOI | MR