Keywords: high order Duffing equation; even periodic solution; continuation theorem
@article{CMJ_2007_57_1_a24,
author = {Wang, Genqiang and Cheng, Sui Sun},
title = {Even periodic solutions of higher order duffing differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {331--343},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309968},
zbl = {1174.34037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a24/}
}
Wang, Genqiang; Cheng, Sui Sun. Even periodic solutions of higher order duffing differential equations. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 331-343. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a24/
[1] F. Nakajima: Even and periodic solutions of the equation $u^{\prime \prime }+g( u) =e( t)$. J. Diff. Equations 83 (1990), 277–299. | MR
[2] T. R. Ding: Nonlinear oscillations at a point of resonance. Sci. Sinica Ser. A 25 (1982), 918–931. | MR | Zbl
[3] P. Omari, P. Zanolin: A note on nonliner oscillations at resonance. Acta Math. Sinica 3 (1987), 351–361. | DOI | MR
[4] X. K. Huang, Z. G. Xiang: On the existence of $2\pi $-periodic solution for delay Duffing equation $x^{\prime \prime }(t) +g( x( t-r)) =p( t)$. Chinese Science Bulletin 39 (1994), 201–203.
[5] W. S. Loud: Periodic solutions of nonlinear differential equation of Duffing types. In: Differential and Functional Equations, Benjami, New York, 1967, pp. 199–224. | MR
[6] W. B. Liu: The Existence of periodic solutions for high order Duffing equations. Acta Math. Sinica 46 (2003), 49–56. | MR | Zbl
[7] R. E. Gaines, J. L. Mawhin: Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math. Vol. 586. Springer-Verlag, Berlin, New York, 1977. | MR