Complemented copies of $\ell_p$ spaces in tensor products
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 319-329 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give sufficient conditions on Banach spaces $X$ and $Y$ so that their projective tensor product $X\otimes _\pi Y$, their injective tensor product $X\otimes _\epsilon Y$, or the dual $(X\otimes _\pi Y)^*$ contain complemented copies of $\ell _p$.
We give sufficient conditions on Banach spaces $X$ and $Y$ so that their projective tensor product $X\otimes _\pi Y$, their injective tensor product $X\otimes _\epsilon Y$, or the dual $(X\otimes _\pi Y)^*$ contain complemented copies of $\ell _p$.
Classification : 46B20, 46B28
Keywords: $\ell _p$ space; injective and projective tensor product
@article{CMJ_2007_57_1_a23,
     author = {Cilia, Raffaella and Guti\'errez, Joaqu{\'\i}n M.},
     title = {Complemented copies of $\ell_p$ spaces in tensor products},
     journal = {Czechoslovak Mathematical Journal},
     pages = {319--329},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309967},
     zbl = {1174.46009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a23/}
}
TY  - JOUR
AU  - Cilia, Raffaella
AU  - Gutiérrez, Joaquín M.
TI  - Complemented copies of $\ell_p$ spaces in tensor products
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 319
EP  - 329
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a23/
LA  - en
ID  - CMJ_2007_57_1_a23
ER  - 
%0 Journal Article
%A Cilia, Raffaella
%A Gutiérrez, Joaquín M.
%T Complemented copies of $\ell_p$ spaces in tensor products
%J Czechoslovak Mathematical Journal
%D 2007
%P 319-329
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a23/
%G en
%F CMJ_2007_57_1_a23
Cilia, Raffaella; Gutiérrez, Joaquín M. Complemented copies of $\ell_p$ spaces in tensor products. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 319-329. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a23/

[1] J. Bourgain: New classes of ${L}_p$-spaces. Lecture Notes in Math. vol. 889, Springer, Berlin, 1981. | MR

[2] J. Bourgain: New Banach space properties of the disc algebra and $H^\infty $. Acta Math. 152 (1984), 1–48. | DOI | MR

[3] F. Cabello, D. Pérez-García and I. Villanueva: Unexpected subspaces of tensor products. J. London Math. Soc. 74 (2006), 512–526. | MR

[4] J. M. F. Castillo: On Banach spaces $X$ such that ${\mathcal{L}}(L_p,X)={\mathcal{K}}(L_p,X)$. Extracta Math. 10 (1995), 27–36. | MR

[5] A. Defant and K. Floret: Tensor Norms and Operator Ideals. Math. Studies 176, North-Holland, Amsterdam, 1993. | MR

[6] J. Diestel: A survey of results related to the Dunford-Pettis property. In: W. H. Graves (ed.), Proc. Conf. on Integration, Topology and Geometry in Linear Spaces, Chapel Hill 1979, Contemp. Math. 2, 15–60, American Mathematical Society, Providence RI, 1980. | MR | Zbl

[7] J. Diestel: Sequences and Series in Banach Spaces. Graduate Texts in Math. 92, Springer, Berlin, 1984. | MR

[8] J. Diestel, H. Jarchow and A. Tonge: Absolutely Summing Operators. Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge, 1995. | MR

[9] J. Diestel and J. J. Uhl, Jr.: Vector Measures. Math. Surveys Monographs 15, American Mathematical Society, Providence RI, 1977. | MR

[10] E. Dubinsky, A. Pełczyński and H. P. Rosenthal: On Banach spaces $X$ for which $\Pi _2({L}_\infty ,X)=B({L}_\infty ,X)$. Studia Math. 44 (1972), 617–648. | MR

[11] M. González and J. M. Gutiérrez: The Dunford-Pettis property on tensor products. Math. Proc. Cambridge Philos. Soc. 131 (2001), 185–192. | MR

[12] J. M. Gutiérrez: Complemented copies of $\ell _2$ in spaces of integral operators. Glasgow Math. J. 47 (2005), 287–290. | DOI | MR

[13] J. Lindenstrauss and A. Pełczyński: Absolutely summing operators in ${L}_p$-spaces and their applications. Studia Math. 29 (1968), 275–326. | DOI | MR

[14] J. Lindenstrauss and H. P. Rosenthal: The ${L}_p$-spaces. Israel J. Math. 7 (1969), 325–349. | MR

[15] F. Lust: Produits tensoriels injectifs d’espaces de Sidon. Colloq. Math. 32 (1975), 285–289. | DOI | MR | Zbl

[16] H. P. Rosenthal: Point-wise compact subsets of the first Baire class. Amer. J. Math. 99 (1977), 362–378. | DOI | MR | Zbl

[17] R. A. Ryan: The Dunford-Pettis property and projective tensor products. Bull. Polish Acad. Sci. Math. 35 (1987), 785–792. | MR | Zbl

[18] M. Talagrand: Cotype of operators from $C(K)$. Invent. Math. 107 (1992), 1–40. | DOI | MR | Zbl