Keywords: compact Hausdorff space; Lindelöf set; monomorphism
@article{CMJ_2007_57_1_a22,
author = {Ball, Richard N. and Hager, Anthony W.},
title = {Monomorphisms in spaces with {Lindel\"of} filters},
journal = {Czechoslovak Mathematical Journal},
pages = {281--317},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309966},
zbl = {1174.05066},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a22/}
}
Ball, Richard N.; Hager, Anthony W. Monomorphisms in spaces with Lindelöf filters. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 281-317. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a22/
[1] R. Ball and A. Hager: Archimedean kernel-distinguishing extensions of archimedean $\ell $-groups with weak unit. Indian J. Math. 29 (1987), 351–368. | MR
[2] R. Ball and A. Hager: Applications of spaces with filters to archimedean $\ell $-groups with weak unit. Ordered Algebraic Structures, J. Martinez (ed.), Kluwer, Dordrecht, 1989, pp. 99–112. | MR
[3] R. Ball and A. Hager: Characterization of epimorphisms in archimedean lattice-ordered groups and vector lattices. Lattice-Ordered Groups, Advances and Techniques, A. Glass and C. Holland (eds.), Kluwer, Dordrecht, 1989, pp. 175–205. | MR
[4] R. Ball and A. Hager: Epicomplete archimedean $\ell $-groups. Trans. Amer. Math. Soc. 322 (1990), 459–478. | MR
[5] R. Ball and A. Hager: Epicompletion of archimedean $\ell $-groups and vector lattices with weak unit. J. Austral. Math. Soc. (1990), 25–56. | MR
[6] R. Ball, A. Hager and A. Macula: An $\alpha $-disconnected space has no proper monic preimage. Top. Appl. 37 (1990), 141–151. | MR
[7] R. Ball, A. Hager and A. Molitor: Spaces with filters. Proc. Symp. Cat. Top. Univ. Cape Town 1994, C. Gilmour, B. Banaschewski and H. Herrlich (eds.), Dept. Math. and Appl. Math., Univ. Cape Town, 1999, pp. 21–36. | MR
[8] R. Ball, A. Hager and C. NeVille: The quasi-$F_\kappa $ cover of a compact Hausdorff space and the $\kappa $-ideal completion of an archimedean $\ell $-group. General Topology and its Applications, R. M. Shortt (ed.), Dekker Notes 123, Marcel Dekker, 1989, pp. 1–40.
[9] R. Ball and J. Walters-Wayland: $C$- and $C^*$-quotients in pointfree topology. Dissertationes Mathematicae 412, Warszawa, 2002. | MR
[10] W. W. Comfort and A. Hager: Estimates for the number of real-valued continuous functions. Trans. Amer. Math. Soc. 150 (1970), 618–631. | MR
[11] R. Engelking: General Topology. Revised and completed ed., Sigma Series in Pure Mathematics; Vol. 6, Heldermann, Berlin, 1989. | MR | Zbl
[12] Z. Frolík: On bianalytic spaces. Czech. Math. J. 88 (1963), 561–573.
[13] L. Gillman and M. Jerison: Rings of Continuous Functions. Van Nostrand, Princeton, 1960, reprinted as Springer-Verlag Graduate Texts 43, Berlin-Heidelberg-New York, 1976. | MR
[14] A. Hager: Monomorphisms in Spaces with Filters. Lecture at Curacao Math. Foundation Conference on Locales and Topological Groups, 1989.
[15] A. Hager and L. Robertson: Representing and ringifying a Riesz space. Sympos. Math. XXI (1977), 411–431. | MR
[16] P. Halmos: Lectures on Boolean Algebras. Van Nostrand, 1963. | MR | Zbl
[17] M. Henriksen and D. Johnson: The structure of a class of archimedean lattice-ordered algebras. Fund. Math. 50 (1961/1962), 73–94. | MR
[18] H. Herrlich and G. Strecker: Category Theory. Allyn and Bacon, Inc., 1973. | MR
[19] P. Johnstone: Stone Spaces. Cambridge University Press, Cambridge, 1982. | MR | Zbl
[20] S. Koppelberg: Handbook of Boolean Algebras, I. J. Monk, with R. Bonnet (ed.), North Holland, Amsterdam, 1989. | MR
[21] A. Macula: Archimedean vector lattices versus topological spaces with filters. Ph.D. thesis, Wesleyan University, 1989.
[22] A. Macula: Monic sometimes means $\alpha $-irreducible. General Topology and its Applications, S. J. Andima et al. (eds.), Dekker Notes 134, Marcel Dekker, 1991, pp. 239–260. | MR | Zbl
[23] J. Madden and J. Vermeer: Epicomplete archimedean $\ell $-groups via a localic Yosida theorem. J. Pure Appl. Algebra 68 (1990), 243–252. | DOI | MR
[24] J. Madden: $\kappa $-frames. J. Pure Appl. Algebra 70 (1991), 107–127. | DOI | MR | Zbl
[25] J. Madden and A. Molitor: Epimorphisms of frames. J. Pure Appl. Algebra 70 (1991), 129–132. | DOI | MR
[26] R. D. Mauldin: Baire functions, Borel sets, and ordinary function systems. Adv. Math. 12 (1974), 418–450. | DOI | MR | Zbl
[27] J. Mioduszewski and L. Rudolph: $H$-closed and extremally disconnected Hausdorff spaces. Diss. Math. 66 (1969). | MR
[28] A. Molitor: Covers of compact Hausdorff spaces via localic methods. Ph.D. thesis, Wesleyan University, 1992.
[29] A. Molitor: A localic construction of some covers of compact Hausdorff spaces. General Topology and Applications, R. M. Shortt (ed.), Dekker Notes 123, Marcel Dekker, 1990, pp. 219–226. | MR | Zbl
[30] Z. Semadeni: Banach Spaces of Continuous Functions. PWN Publishers, 1971. | MR | Zbl
[31] R. Sikorski: Boolean Algebras, third ed. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1969.
[32] M. Stone: Boundedness properties in function lattices. Canad. J. Math. 1 (1949), 176–186. | DOI | MR | Zbl
[33] Z. Tzeng: Extended real-valued functions and the projective resolution of a compact Hausdorff space. Ph.D. thesis, Wesleyan Univ., 1970.
[34] J. Vermeer: The smallest basically disconnected preimage of a space. Topology Appl. 17 (1984), 217–232. | DOI | MR | Zbl
[35] R. Woods: Covering properties and coreflective subcategories. Proc. CCNY Conference on Limits 1987, Ann. NY Acad. Sc. 552, 173–184. | MR | Zbl
[36] K. Yosida: On the representation of the vector lattice. Proc. Imp. Acad. Tokyo 18 (1942), 339–342. | MR | Zbl