The characteristic of noncompact convexity and random fixed point theorem for set-valued operators
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 269-279 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(\Omega ,\Sigma )$ be a measurable space, $X$ a Banach space whose characteristic of noncompact convexity is less than 1, $C$ a bounded closed convex subset of $X$, $KC(C)$ the family of all compact convex subsets of $C.$ We prove that a set-valued nonexpansive mapping $T\: C\rightarrow KC(C)$ has a fixed point. Furthermore, if $X$ is separable then we also prove that a set-valued nonexpansive operator $T\: \Omega \times C\rightarrow KC(C)$ has a random fixed point.
Let $(\Omega ,\Sigma )$ be a measurable space, $X$ a Banach space whose characteristic of noncompact convexity is less than 1, $C$ a bounded closed convex subset of $X$, $KC(C)$ the family of all compact convex subsets of $C.$ We prove that a set-valued nonexpansive mapping $T\: C\rightarrow KC(C)$ has a fixed point. Furthermore, if $X$ is separable then we also prove that a set-valued nonexpansive operator $T\: \Omega \times C\rightarrow KC(C)$ has a random fixed point.
Classification : 47H09, 47H10, 47H40
Keywords: random fixed point; set-valued random operator; measure of noncompactness
@article{CMJ_2007_57_1_a21,
     author = {Kumam, Poom and Plubtieng, Somyot},
     title = {The characteristic of noncompact convexity and random fixed point theorem for set-valued operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {269--279},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309965},
     zbl = {1174.47042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a21/}
}
TY  - JOUR
AU  - Kumam, Poom
AU  - Plubtieng, Somyot
TI  - The characteristic of noncompact convexity and random fixed point theorem for set-valued operators
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 269
EP  - 279
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a21/
LA  - en
ID  - CMJ_2007_57_1_a21
ER  - 
%0 Journal Article
%A Kumam, Poom
%A Plubtieng, Somyot
%T The characteristic of noncompact convexity and random fixed point theorem for set-valued operators
%J Czechoslovak Mathematical Journal
%D 2007
%P 269-279
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a21/
%G en
%F CMJ_2007_57_1_a21
Kumam, Poom; Plubtieng, Somyot. The characteristic of noncompact convexity and random fixed point theorem for set-valued operators. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 269-279. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a21/

[1] J. P. Aubin and H. Frankowska: Set-valued Analysis. Birkhäuser, Boston, 1990. | MR

[2] J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo: Measures of Noncompactness in Metric Fixed Point Theory; Advances and Applications Topics in Metric Fixed Point Theory. Birkhauser-Verlag, Basel 99, 1997. | MR

[3] K. Deimling: Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1974. | MR

[4] T. Domínguez Benavides and P. Lorenzo Ramírez: Fixed point theorem for multivalued nonexpansive mapping without uniform convexity. Abstr. Appl. Anal. 6 (2003), 375–386. | DOI | MR

[5] T. Domínguez Benavides and P. Lorenzo Ramírez: Fixed point theorem for multivalued nonexpansive mapping satisfying inwardness conditions. J. Math. Anal. Appl. 291 (2004), 100–108. | DOI | MR

[6] T. Domínguez Benavides, G. Lopez Acedo and H. K. Xu: Random fixed point of set-valued operator. Proc. Amer. Math. Soc. 124 (1996), 838–838. | DOI | MR

[7] K. Goebel and W. A. Kirk: Topics in metric fixed point theorem. Cambridge University Press, Cambridge, 1990. | MR

[8] S. Itoh: Random fixed point theorem for a multivalued contraction mapping. Pacific J.  Math. 68 (1977), 85–90. | DOI | MR | Zbl

[9] W. A. Kirk: Nonexpansive mappings in product spaces, set-valued mappings, and k-uniform rotundity. Proceedings of the Symposium Pure Mathematics, Vol. 45, part  2, American Mathematical Society, Providence, 1986, pp. 51–64. | MR | Zbl

[10] P. Lorenzo Ramírez: Some random fixed point theorems for nonlinear mappings. Nonlinear Anal. 50 (2002), 265–274. | DOI | MR

[11] P. Lorenzo Ramírez: Random fixed point of uniformly Lipschitzian mappings. Nonlinear Anal. 57 (2004), 23–34. | DOI | MR

[12] N. Shahzad and S. Latif: Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps. J. Math. Anal. Appl. 237 (1999), 83–92. | DOI | MR

[13] K.-K. Tan and X. Z. Yuan: Some random fixed point theorems. Fixed Point Theory and Applications, K.-K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345. | MR

[14] D.-H. Wagner: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859–903. | DOI | MR | Zbl

[15] H. K. Xu: Some random fixed point for condensing and nonexpansive operators. Proc. Amer. Math. Soc. 110 (1990), 395–400. | DOI | MR

[16] H. K. Xu: Metric fixed point for multivalued mappings. Dissertationes Math. (Rozprawy Mat.) 389 (2000), 39. | MR

[17] H. K. Xu: A random theorem for multivalued nonexpansive operators in uniformly convex Banach spaces. Proc. Amer. Math. Soc. 117 (1993), 1089–1092. | DOI | MR

[18] H. K. Xu: Random fixed point theorems for nonlinear uniform Lipschitzian mappings. Nonlinear Anal. 26 (1996), 1301–1311. | DOI | MR

[19] H. K. Xu: Multivalued nonexpansive mappings in Banach spaces. Nonlinear Anal. 43 (2001), 693–706. | DOI | MR | Zbl

[20] S. Reich: Fixed points in locally convex spaces. Math. Z. 125 (1972), 17–31. | DOI | MR | Zbl

[21] X. Yuan and J. Yu: Random fixed point theorems for nonself mappings. Nonlinear Anal. 26 (1996), 1097–1102. | DOI | MR