Keywords: boundary behavior of holomorphic functions; exceptional sets; boundary functions; computed tomography; Dirichlet problem
@article{CMJ_2007_57_1_a2,
author = {Kot, Piotr},
title = {Boundary functions in $L^2H(\mathbb{B}^n)$},
journal = {Czechoslovak Mathematical Journal},
pages = {29--47},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309946},
zbl = {1174.30001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a2/}
}
Kot, Piotr. Boundary functions in $L^2H(\mathbb{B}^n)$. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 29-47. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a2/
[1] J. Chaumat, oral communication: Seminar on Complex Analysis at the Institute of Mathematics at Jagiellonian University. 1988.
[2] A. Faridani: Mathematical problems in computed tomography, Proceedings of the 1999 Mathematical Geophysics Summerschool held at Stanford University. Published online at http:/cartan.stanford.edu/mgss/html/1999_proceedings.html</b>
[3] J. Globevnik: Holomorphic functions which are highly nonintegrable at the boundary. Isr. J. Math. 115 (2000), 195–203. | MR | Zbl
[4] P. Jakóbczak: The exceptional sets for functions from the Bergman space. Port. Math. 50 (1993), 115–128. | MR
[5] P. Jakóbczak: The exceptional sets for holomorphic functions in Hartogs domains, Complex Variables. Theory Appl. 32 (1997), 89–97. | DOI | MR
[6] P. Jakóbczak: Description of exceptional sets in the circles for functions from the Bergman space. Czechoslovak Math. J. 47 (1997), 633–649. | DOI | MR
[7] P. Jakóbczak: Highly non-integrable functions in the unit ball. Isr. J. Math. 97 (1997), 175–181. | DOI
[8] P. Jakóbczak: Exceptional sets of slices for functions from the Bergman space in the ball. Can. Math. Bull. 44 (2001), 150–159. | DOI | MR
[9] P. Kot: Description of simple exceptional sets in the unit ball. Czechoslovak Math. J. 54 (2004), 55–63. | DOI | MR | Zbl
[10] P. Pflug: oral communication, 4-th Symposium on Classical Analysis, Kazimierz. (1987).
[11] W. Rudin: Function theory in the unit ball of $\mathbb{C}^{n}$. Springer, New York, 1980. | MR
[12] P. Wojtaszczyk: On highly nonintegrable functions and homogeneous polynomials. Ann. Pol. Math. 65 (1997), 245–251. | DOI | MR | Zbl