Honest submodules
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 225-241 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Lattices of submodules of modules and the operators we can define on these lattices are useful tools in the study of rings and modules and their properties. Here we shall consider some submodule operators defined by sets of left ideals. First we focus our attention on the relationship between properties of a set of ideals and properties of a submodule operator it defines. Our second goal will be to apply these results to the study of the structure of certain classes of rings and modules. In particular some applications to the study and the structure theory of torsion modules are provided.
Lattices of submodules of modules and the operators we can define on these lattices are useful tools in the study of rings and modules and their properties. Here we shall consider some submodule operators defined by sets of left ideals. First we focus our attention on the relationship between properties of a set of ideals and properties of a submodule operator it defines. Our second goal will be to apply these results to the study of the structure of certain classes of rings and modules. In particular some applications to the study and the structure theory of torsion modules are provided.
Classification : 16D80, 16W35
Keywords: closed submodules; honest submodules; topological filters
@article{CMJ_2007_57_1_a18,
     author = {Jara, Pascual},
     title = {Honest submodules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {225--241},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309962},
     zbl = {1164.16003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a18/}
}
TY  - JOUR
AU  - Jara, Pascual
TI  - Honest submodules
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 225
EP  - 241
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a18/
LA  - en
ID  - CMJ_2007_57_1_a18
ER  - 
%0 Journal Article
%A Jara, Pascual
%T Honest submodules
%J Czechoslovak Mathematical Journal
%D 2007
%P 225-241
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a18/
%G en
%F CMJ_2007_57_1_a18
Jara, Pascual. Honest submodules. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 225-241. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a18/

[1] A. Abian and D. Rinehart: Honest subgroups of Abelian groups. Rend. Circ. Mat. Palermo, II Ser. 12 (1963), 353–356. | DOI | MR

[2] K. A. Brown and K. R. Goodearl: Lectures on algebraic quantum groups. Advanced Courses in Mathematics—CRM Barcelona, Birkhäuser, Basel, 2002. | MR

[3] T. H. Fay and S. V. Joubert: Isolated submodules and skew fields. Applied Categorical Structures 8 (2000), 317–326. | DOI | MR

[4] L. Fuchs: Abelian Groups. Pergamon Press, Oxford, 1967. | MR

[5] J. S. Golan: Torsion Theories. Pitman Monographs and Surveys in Pure and Appl. Math., No. 29, Longman Sc. & Tech., Essex, 1986. | MR | Zbl

[6] K. R. Goodearl: Ring Theory. Nonsingular Rings and Modules. Monographs and Textbooks in Pure and Applied Mathematics, No. 33, Marcel Dekker, Inc., New York-Basel, 1976. | MR | Zbl

[7] K. R. Goodearl and E. S. Letzter: Prime factor algebras of the coordinate ring of quantum matrices. Proc. Amer. Math. Soc. 121 (1994), 1017–1025. | DOI | MR

[8] S. V. Joubert and M. J. Schoeman: Superhonesty for modules and Abelian groups. Chinese J. Math. 12 (1984), 87–95. | MR

[9] S. V. Joubert and M. J. Schoeman: A note on generalized honest subgroups of Abelian groups. Comment. Math. Univ. St. Paul. 36 (1987), 145–148. | MR