Keywords: nonseparable metric spaces; Luzin spaces; $\sigma $-discrete network; uniformization; bimeasurable maps
@article{CMJ_2007_57_1_a17,
author = {Holick\'y, Petr and Kom{\'\i}nek, V\'aclav},
title = {Descriptive properties of mappings between nonseparable {Luzin} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {201--224},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309961},
zbl = {1174.54024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a17/}
}
Holický, Petr; Komínek, Václav. Descriptive properties of mappings between nonseparable Luzin spaces. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 201-224. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a17/
[1] Z. Frolík: A measurable map with analytic domain and metrizable range is quotient. Bull. Amer. Math. Soc. 76 (1970), 1112–1117. | DOI | MR
[2] Z. Frolík and P. Holický: Applications of Luzinian separation principles (non-separable case). Fund. Math. 117 (1983), 165–185. | DOI | MR
[3] R. W. Hansell: On characterizing non-separable analytic and extended Borel sets as types of continuous images. Proc. London Math. Soc. 28 (1974), 683–699. | MR | Zbl
[4] R. W. Hansell: Descriptive sets and the topology of nonseparable Banach spaces. Serdica Math. J. 27 (2001), 1–66. | MR | Zbl
[5] R. W. Hansell: Descriptive topology. Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, London, New York, Tokyo, 1992, pp. 275–315. | MR | Zbl
[6] P. Holický: Čech analytic and almost $K$-descriptive spaces. Czech. Math. J. 43 (1993), 451–466. | MR
[7] P. Holický: Luzin theorems for scattered-$K$-analytic spaces and Borel measures on them. Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), 395–413. | MR
[8] P. Holický: Generalized analytic spaces, completeness and fragmentability. Czech. Math. J. 51 (2001), 791–818. | DOI | MR
[9] P. Holický and V. Komínek: On projections of nonseparable Souslin and Borel sets along separable spaces. Acta Univ. Carolin. Math. Phys. 42 (2001), 33–41. | MR
[10] P. Holický and J. Pelant: Internal descriptions of absolute Borel classes. Topology Appl. 141 (2004), 87–104. | MR
[11] P. Holický and M. Zelený: A converse of the Arsenin-Kunugui theorem on Borel sets with $\sigma $-compact sections. Fund. Math. 165 (2000), 191–202. | MR
[12] J. E. Jayne and C. A. Rogers: Upper semicontinuous set-valued functions. Acta Math. 149 (1982), 87–125. | DOI | MR
[13] J. Kaniewski and R. Pol: Borel-measurable selectors for compact-valued mappings in the non-separable case. Bull. Pol. Acad. Sci. Math. 23 (1975), 1043–1050. | MR
[14] A. S. Kechris: Classical Descriptive Set Theory. Springer, New York etc., 1995. | MR | Zbl
[15] V. Komínek: A remark on the uniformization in metric spaces. Acta Univ. Carolin. Math. Phys. 40 (1999), 65–74. | MR
[16] R. Purves: Bimeasurable functions. Fund. Math. 58 (1966), 149–157. | DOI | MR | Zbl
[17] C. A. Rogers and R. C. Willmott: On the uniformization of sets in topological spaces. Acta Math. 120 (1968), 1–52. | DOI | MR