Commutative idempotent residuated lattices
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 191-200 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct.
We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct.
Classification : 06B20, 06F05
Keywords: residuated lattice; semilattice; finitely based variety; minimal variety
@article{CMJ_2007_57_1_a16,
     author = {Stanovsk\'y, David},
     title = {Commutative idempotent residuated lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {191--200},
     year = {2007},
     volume = {57},
     number = {1},
     mrnumber = {2309960},
     zbl = {1174.06332},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a16/}
}
TY  - JOUR
AU  - Stanovský, David
TI  - Commutative idempotent residuated lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 191
EP  - 200
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a16/
LA  - en
ID  - CMJ_2007_57_1_a16
ER  - 
%0 Journal Article
%A Stanovský, David
%T Commutative idempotent residuated lattices
%J Czechoslovak Mathematical Journal
%D 2007
%P 191-200
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a16/
%G en
%F CMJ_2007_57_1_a16
Stanovský, David. Commutative idempotent residuated lattices. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 191-200. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a16/

[1] P.  Bahls, J.  Cole, N.  Galatos, P.  Jipsen, and C.  Tsinakis: Cancellative residuated lattices. Algebra Universalis 50 (2003), 83–106. | DOI | MR

[2] K.  Baker, J.  Wang: Definable principal subcongruences. Algebra Universalis 47 (2002), 145–151. | DOI | MR

[3] S.  Burris, H. P.  Sankappanavar: A Course in Universal Algebra. GTM  78. Springer-Verlag, New York-Heidelberg-Berlin, 1981. | MR

[4] K.  Blount, C.  Tsinakis: The structure of residuated lattices. Internat. J.  Algebra Comput. 13 (2003), 437–461. | DOI | MR

[5] R. P.  Dilworth, M.  Ward: Residuated lattices. Trans. Amer. Math. Soc. 45 (1939), 335–354. | DOI | MR

[6] N.  Galatos: Minimal varieties of residuated-lattices. Algebra Universalis 52 (2004), 215–239. | DOI | MR | Zbl

[7] N.  Galatos: Equational bases for joins of residuated-lattice varieties. Studia Logica 76 (2004), 227–240. | DOI | MR | Zbl

[8] N.  Galatos: Varieties of residuated lattices. PhD. Thesis, Vanderbilt University, 2003. | MR

[9] J.  Hart, L.  Rafter, and C.  Tsinakis: The structure of commutative residuated lattices. Internat. J.  Algebra Comput. 12 (2002), 509–524. | DOI | MR

[10] P.  Jipsen, C.  Tsinakis: A survey of residuated lattices. In: Ordered Algebraic Structures, J.  Martinez (ed.), Kluwer Academic Publishers, Dordrecht, 2002, pp. 19–56. | MR

[11] R.  McKenzie: Equational bases for lattice theories. Math. Scand. 27 (1970), 24–38. | DOI | MR | Zbl

[12] R.  McKenzie, G.  McNulty, and W.  Taylor: Algebras, Lattices, Varieties, Vol  I. Wadsworth & Brooks/Cole, Monterey, 1987. | MR