Keywords: residuated lattice; semilattice; finitely based variety; minimal variety
@article{CMJ_2007_57_1_a16,
author = {Stanovsk\'y, David},
title = {Commutative idempotent residuated lattices},
journal = {Czechoslovak Mathematical Journal},
pages = {191--200},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309960},
zbl = {1174.06332},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a16/}
}
Stanovský, David. Commutative idempotent residuated lattices. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 191-200. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a16/
[1] P. Bahls, J. Cole, N. Galatos, P. Jipsen, and C. Tsinakis: Cancellative residuated lattices. Algebra Universalis 50 (2003), 83–106. | DOI | MR
[2] K. Baker, J. Wang: Definable principal subcongruences. Algebra Universalis 47 (2002), 145–151. | DOI | MR
[3] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra. GTM 78. Springer-Verlag, New York-Heidelberg-Berlin, 1981. | MR
[4] K. Blount, C. Tsinakis: The structure of residuated lattices. Internat. J. Algebra Comput. 13 (2003), 437–461. | DOI | MR
[5] R. P. Dilworth, M. Ward: Residuated lattices. Trans. Amer. Math. Soc. 45 (1939), 335–354. | DOI | MR
[6] N. Galatos: Minimal varieties of residuated-lattices. Algebra Universalis 52 (2004), 215–239. | DOI | MR | Zbl
[7] N. Galatos: Equational bases for joins of residuated-lattice varieties. Studia Logica 76 (2004), 227–240. | DOI | MR | Zbl
[8] N. Galatos: Varieties of residuated lattices. PhD. Thesis, Vanderbilt University, 2003. | MR
[9] J. Hart, L. Rafter, and C. Tsinakis: The structure of commutative residuated lattices. Internat. J. Algebra Comput. 12 (2002), 509–524. | DOI | MR
[10] P. Jipsen, C. Tsinakis: A survey of residuated lattices. In: Ordered Algebraic Structures, J. Martinez (ed.), Kluwer Academic Publishers, Dordrecht, 2002, pp. 19–56. | MR
[11] R. McKenzie: Equational bases for lattice theories. Math. Scand. 27 (1970), 24–38. | DOI | MR | Zbl
[12] R. McKenzie, G. McNulty, and W. Taylor: Algebras, Lattices, Varieties, Vol I. Wadsworth & Brooks/Cole, Monterey, 1987. | MR