Mots-clés : $\scr {L}\Im $-space; foncteur; catégorie abélienne
@article{CMJ_2007_57_1_a15,
author = {Aqzzouz, B. and Nouira, R.},
title = {La categorie {Abelienne} des quotients de type ${\mathcal LF}$},
journal = {Czechoslovak Mathematical Journal},
pages = {183--190},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309959},
zbl = {1174.46037},
language = {fr},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a15/}
}
Aqzzouz, B.; Nouira, R. La categorie Abelienne des quotients de type ${\mathcal LF}$. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 183-190. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a15/
[1] H. Hogbe Nlend: Théorie des Bornologies et Applications. Lect. Notes Math. Vol. 213. Springer-Verlag, Berlin-Heidelberg-New York, 1971. (French) | MR
[2] A. Grothendieck: Produits Tensoriels Topologiques et Espaces Nucléaires. Mem. Amer. Math. Soc. No. 16. AMS, Providence, 1966. | MR
[3] L. Waelbroeck: Topological Vector Spaces and Algebras. Lect. Notes Math. Vol. 230. Springer-Verlag, Berlin-Heidelberg-New York, 1971. | MR
[4] L. Waelbroeck: Quotient Banach Spaces, Spectral theory 8. Banach Cent. Publ., Warsaw, 1982, pp. 553–562. | MR
[5] L. Waelbroeck: Holomorphic functions taking their values in a quotient bornological space. Linear operators in function spaces. Proc. 12th Int. Conf. Oper. Theory, Timisoara, Rommania, 1988. Oper. Theory, Adv. Appl. 43 (1990), 323–335. | MR