Keywords: $p$-basic subgroups; normalized units; group algebras; starred groups
@article{CMJ_2007_57_1_a14,
author = {Danchev, Peter},
title = {Basic subgroups in modular abelian group algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {173--182},
year = {2007},
volume = {57},
number = {1},
mrnumber = {2309958},
zbl = {1167.16026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a14/}
}
Danchev, Peter. Basic subgroups in modular abelian group algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 173-182. http://geodesic.mathdoc.fr/item/CMJ_2007_57_1_a14/
[1] D. O. Cutler: Another summable $C_\Omega $-group. Proc. Amer. Math. Soc. 26 (1970), 43–44. | MR
[2] P. V. Danchev: Topologically pure and basis subgroups in commutative group rings. Compt. Rend. Acad. Bulg. Sci. 48 (1995), 7–10. | MR | Zbl
[3] P. V. Danchev: Commutative group algebras of $\sigma $-summable abelian groups. Proc. Amer. Math. Soc. 125 (1997), 2559–2564. | DOI | MR | Zbl
[4] P. V. Danchev: $C_{\lambda }$-groups and $\lambda $-basic subgroups in modular group rings. Hokkaido Math. J. 30 (2001), 283–296. | DOI | MR | Zbl
[5] P. V. Danchev: Basic subgroups in abelian group rings. Czechoslovak Math. J. 52 (2002), 129–140. | DOI | MR | Zbl
[6] P. V. Danchev: Basic subgroups in commutative modular group rings. Math. Bohem. 129 (2004), 79–90. | MR | Zbl
[7] P. V. Danchev: Subgroups of the basic subgroup in a modular group ring. Math. Slovaca 55 (2005), 431–441. | MR | Zbl
[8] P. V. Danchev: Sylow $p$-subgroups of commutative modular and semisimple group rings. Compt. Rend. Acad. Bulg. Sci. 54 (2001), 5–6. | MR | Zbl
[9] L. Fuchs: Infinite abelian groups, I. Mir, Moscow, 1974. (Russian) | MR
[10] P. D. Hill: A summable $C_{\Omega }$-group. Proc. Amer. Math. Soc. 23 (1969), 428–430. | MR
[11] G. Karpilovsky: Unit groups of group rings. North-Holland, Amsterdam, 1989. | MR | Zbl
[12] L. Kovács: On subgroups of the basic subgroup. Publ. Math. Debrecen 5 (1958), 261–264. | MR
[13] W. May: The direct factor problem for modular abelian group algebras. Contemp. Math. 93 (1989), 303–308. | DOI | MR | Zbl
[14] W. May: Modular group algebras of simply presented abelian groups. Proc. Amer. Math. Soc. 104 (1988), 403–409. | DOI | MR | Zbl
[15] N. Nachev: Basic subgroups of the group of normalized units in modular group rings. Houston J. Math. 22 (1996), 225–232. | MR